ABB solar inverters

Hardware manual PVS800-57 central inverters (100 to 1000 kW)

List of related manuals

Inverter hardware manual	Code (English)	
PVS800-57 hardware manual 3AUA0000053		1)
Inverter firmware manual		
PVS800 central inverters firmware manual	3AUA0000058422	 1)
PVS800 adaptive program application guide 3AUA0000091276		
Option manuals and quides		
Manuals and quick guides for I/O extension modules, fieldbus		

Manuals and quick guides for I/O extension modules, fieldbus adapter modules, etc.

¹⁾ Delivered as a printed copy with the inverter.

Hardware manual

PVS800-57 central inverters (100 to 1000 kW)

Table of contents

1. Safety instructions

4. Mechanical installation

6. Electrical installation

8. Start-up

EFFECTIVE: 2020-02-14

Table of contents

1. Safety instructions	
Contents of this chapter	. 11
Use of warnings	
Installation and maintenance safety	. 12
Electrical safety	. 12
Grounding	. 13
Electrical safety precautions	. 14
General safety	. 16
Printed circuit boards	. 19
Fiber optic cables	. 19
Start-up and operation	. 19
2. Introduction to the manual	
Contents of this chapter	. 2
Target audience	
Contents of the manual	
Related documents	. 22
Categorization by frame size and option code	. 22
Quick installation, commissioning and operation flowchart	
Terms and abbreviations	. 23
3. Operation principle and hardware description	
Contents of this chapter	. 25
Product overview	
Block diagram of solar generator system	
Example main circuit diagram of the inverter system (R8i)	
Example main circuit diagram of the inverter system (2 × R8i)	
External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396,	
+G397 and +G398)	
Auxiliary power supply from the inverter main circuit (option +G415)	
Descriptions of symbols	
Example main circuit diagram of the inverter system (3 × R8i)	
External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396,	
+G397 and +G398)	. 39
Auxiliary power supply from the inverter main circuit (option +G415)	. 39
Descriptions of symbols	
Electrical power network supervision functions	. 4′
Positive or negative pole grounding (options +F282 and +F283)	. 42
Reduced run operation in case of a hardware failure	. 42
Layout drawings	
Cabinet layout of frame R7i	. 44
Cabinet layout of frame R8i	
Cabinet layout of frame 2 × R8i	
Cabinet layout of frame 3 × R8i	
Door devices	
nverter module (R7i)	. 50

Inverter module (R8i) Connections and interfaces overview Connection examples CDP-312R control panel Type designation labels Inverter label Inverter module label Type designation key Types -0100kW-A to -0315kW-B Types -0500kW-A to -1000kW-C	52 54 55 56 56 57 58 58
4. Mechanical installation	
Contents of this chapter Checking the installation site Required tools Checking the delivery Moving the unit Placing the unit Overview of the installation process Fastening the cabinet to the floor Alternative 1 – Clamping Alternative 2 – Using the holes inside the cabinet Miscellaneous Preventing the recirculation of hot air Ventilation duct at the air outlet of the cabinet Calculating the required static pressure difference Cable duct in the floor below the cabinet	63 64 64 65 66 67 67 68 69 69 70
5. Planning the electrical installation	
Contents of this chapter Limitation of liability Selecting the transformer Requirements for the transformer Selecting the grid disconnecting device Selecting the DC input disconnecting device Checking the compatibility of the solar generator and inverter Selecting the power cables General rules Recommended AC output power cable types Not allowed power cable types Selecting the control cables General rules Signals in separate cables Signals allowed to be run in the same cable Relay cable type Installation sites above 2000 meters (6560 feet) Routing the cables	73 74 75 75 75 75 77 77 77 77 78 78 78 78
Separate control cable ducts	79 79 79 79

Supplying power for the auxiliary circuits	
Implementing the low voltage ride-through function	
Supplying circuits from the AC output of the inverter	
Implementing ground fault monitoring in IT (ungrounded) systems	
Insulation monitoring device (options +Q954, +Q976, +Q981 and +Q985)	
Safety information	
Customer wiring	
Start-up	
More information	
Implementing positive or negative pole grounding (options +F282 and +F283)	82
Limiting the conducted disturbances with the EMC filter	00
(option +E216) in low-voltage TN (grounded) networks	
Instructions for inverters delivered without input DC fuses (option +0F291) Mechanical installation of the input DC fuses	
Mechanical installation of the input DC fuses	02
6. Electrical installation	
Contents of this chapter	83
Warnings	
Measuring the insulation of the assembly	83
Inverter	83
AC output cable	
DC input cable(s)	
Photovoltaic generator	
Checking the compatibility with IT (ungrounded) systems	
Connecting the power cables	
Connection diagram of a shielded cable	
Connection diagram of a four-conductor system	
AC output cable connection procedure	
Connecting the external power supply cable for the auxiliary circuit	
Checking the wiring of the auxiliary voltage transformer (options +G396, +G397, +G	
and +G415)	
Connecting the DC current measurement signals to an external controller (option +0	
Connecting the junction box power supply (option +G410)	91
Connecting the EMC filter (option +E216)	
Connecting the control cables	
Default I/O connection diagram (RDCU – A43)	
Default I/O connection diagram (RDCU – A41)	
Default I/O connections (RDIO on RDCU – A41)	
Connection procedure	
Making 360 degrees grounding at the cabinet entry for the control cables	
Connecting the cables to the I/O terminals	
Connecting a PC	
Installing optional modules	
Mechanical installation	
Wiring the modules	96
7. Installation checklist	
Contents of this chapter	
Checklist	97

8. Start-up

Contents of this chapter	99 99 99
Parameter settings before first start First start (local control mode) Setting up fieldbus control (option +K454, +K458, +K466, or +K467) Connecting DriveWindow Registering the inverter Configuring the NETA-01 Ethernet adapter module	101 101 101 103 104 104
9. Fault tracing	
Contents of this chapter LEDs Warning and fault messages displayed by the CDP-312R control panel Fault: Same ID numbers Fault tracing of the insulation monitoring device (options +Q954, +Q976, +Q981 and +Q985)	107 107 108 108
10. Maintenance	
Contents of this chapter Maintenance intervals Cleaning the interior of the cabinet Replacing the air filters Inlet (door) filters Cleaning the heatsink Checking and cleaning the power connections (R8i, 2 × R8i, 3 × R8i) Fans Replacing the LCL filter cooling fan (R7i) Replacing the LCL filter cooling fan (R8i, 2 × R8i, 3 × R8i) Replacing the door fans Replacing the cabinet roof fans (R8i) Replacing the cooling fan of the inverter module (R7i) Replacing the cooling fan of the inverter module (R8i, 2 × R8i, 3 × R8i) Replacing the inverter module (frames R8i, 2 × R8i, 3 × R8i) Removing the module from the cubicle Installing the module into the cubicle Replacing the LCL filter	109 111 111 111 112 113 114
11. Technical data	
Contents of this chapter	125

Ratings	
Altitude derating	
Temperature rating curves	
Temperature rating of types -0100kW-A and -0250kW-A	
Temperature rating of types -0315kW-B and -0630kW-B	
Temperature rating of types-0500kW-A, -0875kW-B and -1000kW-C	
With temperature compensated altitude derating	
Type equivalence table	
Fuses	
Main circuit AC fuses	
Inverter DC fuses	
DC fuses for 2 DC input connections (option +2H382)	
DC fuses for 4 DC input connections (option +4H382)	
DC fuses for 5 DC input connections (option +5H382)	
DC fuses for 8 DC input connections (option +8H382)	
DC fuses for 10 DC input connections (option +10H382)	
DC fuses for 12 DC input connections (option +12H382)	
DC fuses for 15 DC input connections (option +15H382)	
DC fuses for 16 DC input connections (option +16H382)	
DC fuses for 20 DC input connections (option +20H382)	
Fuses for inverters delivered without input DC fuses (option +0F291)	
Miniature DC circuit breakers (option +H377)	
Miniature circuit breakers for options +G300 and +G410	
Dimensions, weights and free space requirements	
Losses, cooling data and noise	
Terminal and cable entry data for the DC input power cable	
Terminal and cable entry data for the AC output power cable	
AC output connection specification	
DC input connection data	
Control unit (RDCU/RMIO) connection data	
Analog inputs	
Constant voltage output	
Auxiliary power output	
Analog outputs	
Digital inputs	
Auxiliary power connection data	
Relay outputs	
DDCS fiber optic link	
24 V DC power input	
Isolation and grounding diagram	
Efficiency	
Protective class	
Ambient conditions	
Materials	
Auxiliary circuit power consumption	
Applicable standards and requirements	
CE marking	
Compliance with the European Low Voltage Directive	
Compliance with the European EMC directive	
Compliance with EMC standards EN 61000-6-2:2005 and EN 61000-6-4:2	
Medium voltage network	
Low-voltage network	
"C-tick" marking	

12. Dimension drawings

Contents of this chapter	151
Frame R7i	152
Frame R8i	155
Frame 2 × R8i	162
Frame 3 × R8i	170

Further information

Safety instructions

Contents of this chapter

This chapter contains the safety instructions which you must obey when you install and operate the inverter and do maintenance on the inverter. Obey these safety instructions to prevent injury or death, or damage to the equipment.

Use of warnings

Warnings tell you about conditions which can cause injury or death, or damage to the equipment. They also tell you how to prevent the danger.

The manual uses these warning symbols:

Electricity warning – Electrical hazards which can cause injury or death, or damage to the equipment.

General warning – Conditions, other than those caused by electricity, which can cause injury or death, or damage to the equipment.

Electrostatic sensitive devices warning – Risk of electrostatic discharge which can cause damage to the equipment.

Installation and maintenance safety

Electrical safety

These warnings are for all personnel who work on the inverter, its input and output cables, the transformer or photovoltaic generator.

WARNING! Obey these instructions to prevent injury or death, or damage to the equipment.

- If you are not a qualified electrical professional, do not do electrical installation or maintenance work.
- Obey all installation safety standards. This can require, among other things, the use of
 personal protection equipment (PPE), such as arc-proof clothing, arc-proof masks,
 protective footwear, protective gloves, eye protection and hearing protection. High
 power inverter installations have high fault currents. Select appropriate arc-proof
 clothing (for example, in the US, a rating of 40 cal/cm² is required).
- Standard IEC/EN 62109-2 (section 4.8.3.6) requires that, as the inverter is not
 provided with full protection against shock hazards on the photovoltaic array, you
 install and use the inverter in a closed electrical operating area. There is no RCD
 protection inside the inverter.
- Do not do work on the photovoltaic generator, or the inverter, or its input or output cables, when the inverter is connected to an electrical power system or to the photovoltaic generator. Voltage may be present when the panels are exposed to light.
- Before you do work in the inverter cabinet, isolate the AC line cables and busbars from the electrical power system with the disconnector of the power system transformer. Also, isolate the inverter from the photovoltaic generator with the safety switch of the generator or by other means. The optional AC disconnector or optional breaker do not isolate the AC output cables and terminals of the inverter from the electrical power system. The optional DC disconnector does not isolate the DC input fuses, cables or terminals from the DC voltage supplied by the photovoltaic generator. There are service access areas that remain energized during service, but sufficient guards are provided for indirect contact.
- There are more than one live circuits. Refer to the single line diagram.
- Before you do work in the inverter cabinet, turn off or isolate the auxiliary voltage supply from the inverter.
- The inverter auxiliary power can be supplied from an external source (standard) or from internal auxiliary power transformers. Make sure that auxiliary power is disconnected.
- Do not operate the inverter with the doors open, even in fault tracking conditions or when the inverter is in sleep mode. The inverter doors act as arc hazard protection. If a highly unlikely arc flash incident happens when the inverter doors are open, even the arc-flash proof protection equipment might not provide sufficient protection.
- Before you do work on the inverter, apply a temporary grounding for work (AC and DC side).
- Do not do work on the control cables when power is applied to the inverter or to the external control circuits. Externally supplied control circuits can cause dangerous voltages in the inverter even when the main power on the inverter is off.

- Live parts in the inverter cabinet are protected against direct contact when all protective plastic covers and metallic shrouds are in place. Be careful when handling sharp metallic shrouds.
- Do not do insulation or voltage withstand tests on the inverter or inverter modules.
- The installation must be done according to the local requirements (for example, ANSI/NFPA 70, Canadian Electrical Code, and so on).
- Utility interconnection may require approval from the authority with local jurisdiction.

Note:

- The DC connection terminals (UDC+, UDC-, L+ and L-) are at a dangerous DC voltage (up to 1100 V).
- External wiring can supply dangerous voltages to the terminals of relay outputs (RO1, RO2 and RO3).
- Depending on the external and internal wiring, there can be dangerous voltages (115 V or 230 V) at different terminals in the auxiliary connection unit.
- With options +F282 and +F283, one of the poles of the photovoltaic generator is grounded, and thus the other pole has full voltage against ground (up to 1100 V).
- When the photovoltaic generator cells are exposed to light (even if it is dim), the generator supplies DC voltage to the inverter.

Grounding

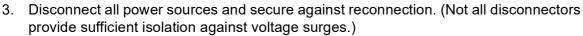
These instructions are for all personnel who are responsible for the grounding of the inverter.

WARNING! Obey these instructions to prevent injury or death, damage to the equipment and electromagnetic interference.

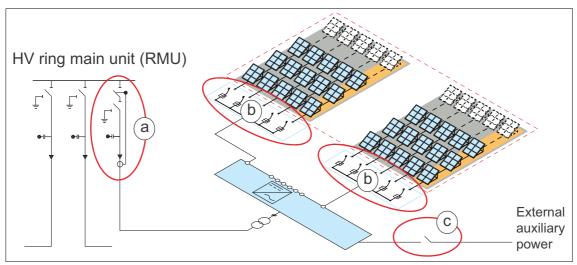
- Only qualified electrical professionals are permitted to do grounding work.
- Always ground the inverter and adjoining equipment. This is necessary for the personnel safety. Proper grounding also reduces electromagnetic emission and interference. Follow the site policy on disconnecting the inverter from AC and DC.
- Make sure that the conductivity of the grounding conductors is sufficient. See section Selecting the power cables on page 75. Obey the local regulations.
- The minimum cross section of the grounding conductor must be at least half of the cross section of the line conductor or fulfill the local regulations. Refer to standard IEC 60364-5-54.
- In a multiple-inverter installation, connect each inverter separately to protective earth (PE) busbar of the switch board or the transformer.
- When shielded AC power cables are used, make a 360-degree high frequency grounding of the cables at the cabinet entry to suppress electromagnetic disturbances. Also connect the cable shields to protective earth (PE) to meet safety regulations.
- EMC filters are not permitted at the AC output of the inverter.
- Do not install the inverter on a TN (grounded) system.
- Do not install the EMC filter option (+E216) for the network side of the low voltage transformer on an IT (ungrounded) system.

Note:

- You can use power cable shields as grounding conductors only if their conductivity is sufficient.
- As the normal touch current of the inverter is higher than 3.5 mA AC or 10 mA DC, you
 must use a fixed protective earth connection. See standard IEC/EN 62109, 5.2.5.


Electrical safety precautions

These precautions are for all personnel who do work on the inverter, its input and output cables, the transformer or photovoltaic generator



WARNING! Obey these instructions to prevent injury or death, or damage to the equipment. You must be a qualified electrical professional to do installation and maintenance work. Do these steps before you do installation or maintenance work on the inverter.

- 1. Prepare for the work. Make sure that you have a work order. Select the applicable personal protective equipment.
- 2. Clearly identify the work location and equipment. Make sure that there is an escape route available in case of an emergency.

- Disconnect the inverter from the AC supply (normally a disconnector or a breaker on the HV side of the main transformer), as the AC main switch-disconnector (Q1) does not remove the voltage from the AC busbars of the inverter. (a)
- Disconnect the inverter from the DC power supply (usually the DC switches of the solar array junction boxes or the DC combiner box), because the DC main switch (Q2) does not isolate the DC input fuses, cables or terminals from the DC voltage supplied by the photovoltaic generator. (b)
- Disconnect the possible UPS or other auxiliary external power supplies (c).
- Make sure that reconnection is not possible. Lock all of the disconnectors in the open position and attach a warning notice to them (lockout-tagout).
- After you disconnect the inverter, wait for at least 5 minutes to let the capacitors discharge before you continue.

- 4. Make sure that there is no voltage present.
 - Use a voltage detector with nominal voltage of 1000 V DC and minimum withstand voltage of 2000 V DC (in rare fault cases the voltage on the DC terminal can be two times the system voltage). The detector must have a self-testing feature to ensure that it works correctly. Notice the weather conditions of the site when you do the measurements: do not measure in wet conditions. Do not use a multimeter.
 - Make sure that the voltage between the inverter AC output terminals (L1, L2, L3) and the grounding (PE) busbar is close to 0 V. Measure every phase-to-phase and phase-to-ground voltage (L1-L2, L1-L3, L2-L3, L1-GND, L2-GND and L3-GND).
 - Make sure that the voltage between the inverter module UDC+ and UDCterminals and the grounding (PE) busbar is close to 0 V.
 - Make sure that the voltage between the DC input terminals L+ and L- and the grounding (PE) busbar is close to 0 V.
- 5. Install temporary grounding. Connect the AC and DC busbars to the PE with a temporary grounding tool. Temporary grounding must withstand the available short circuit current of the AC or DC supply. One temporary grounding device may not be enough on the AC side. Usually, there are 25 mm ball grounding terminals that can be used. The temporary grounding cables must be dimensioned to withstand the prospective current of the system until the upstream protection device clears the fault current. The temporary grounding cables should be tied tightly to the busbars or the frame unit as the forces of the short circuit current can cause the temporary grounding cables to move hazardously.
- 6. Protect any other energized parts in the work location against contact. Take special precautions when you work near bare conductors.
- 7. Ask the person in charge of work for a permit to work. After you finish the work, make sure that the inverter is clean from inside and that all the tools have been removed from inside the inverter, remove the temporary grounding and inform the person responsible that the work is complete. After you make sure that the voltage can be connected, close all the doors of the inverter, and close the disconnectors. When

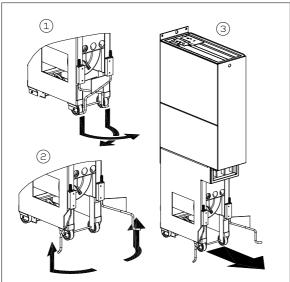
AC busbar grounding

connecting voltage back on, do not stand right next to the inverter. Also make sure that there is an escape route available in case of an emergency.

General safety

These instructions are for all personnel who do work on the inverter.

WARNING! Obey these instructions to prevent injury or death, or damage to the equipment.


- Keep the inverter in its package until you install it. After unpacking, protect the inverter from dust, debris and moisture.
- Use the required personal protective equipment: safety shoes with metal toe cap, safety glasses, protective gloves, etc.
- Lift the cabinet with a lifting device. Use the designated lifting points.
- The lifting beams attached to the cabinet are heavy. Be careful when removing or installing the beams. Whenever possible, use a lifting device attached to the designated lifting points.
- Secure the inverter cabinet to the floor to prevent it from toppling over. The cabinet
 has a high center of gravity. When you pull out heavy components, such as inverter
 modules, there is a risk of overturning. Secure the cabinet also to the wall when
 necessary.
- Do not stand or walk on the cabinet roof. Make sure that nothing presses against the
 roof, side or back plates or door. Do not store anything on the roof while the inverter is
 in operation.
- Make sure that the debris from the installation work does not go into the inverter. Electrically conductive debris in the unit can cause damage.
- Be careful of the cooling fan blades. The fans can operate for a few seconds after you disconnect the electrical supply. Do not stick fingers or other objects into the fans.
- Be careful of hot surfaces. Some parts in the inverter cabinet, such as the heat exchangers are hot after you disconnect the electrical supply.
- Do not open the doors of the inverter when water, sand or dust can blow into the unit. Water, sand or dust in the inverter can cause damage in the unit.

- Be careful when handling an inverter or LCL filter module. The module overturns easily because it is heavy and has a high center of gravity. Handle the drive module carefully:
 - Extend the support legs of the module when it is removed from the cabinet.
 - Do not tilt the module.
 - Do not leave an unsupported module unattended, especially on a sloping floor.
 - Lift the module by the upper part only using the lifting hole(s) at the top.

- Do not use the module extraction/installation ramp with plinth heights over 50 mm (1.97 in). The ramp supplied with the inverter is designed for a plinth height of 50 mm, which is the standard plinth height of ABB cabinets.
- Secure the module extraction/installation ramp carefully.
- When removing a module which is equipped with wheels, pull the module carefully
 out of the cubicle along the ramp. Make sure that the wires do not catch. While
 pulling on the handle, keep a constant pressure with one foot on the base of the
 module to prevent the module from tipping over. Use safety shoes with metal toe
 cap to avoid foot injury.
- When installing a module which is equipped with wheels, push the module up the ramp into the cubicle. Keep your fingers away from the edge of the module front plate to avoid pinching them between the module and the cubicle. Also keep a constant pressure with one foot on the base of the module to stabilize the movement.

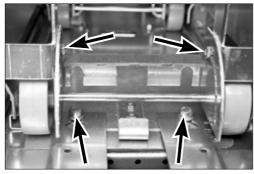


ABB recommends that you do not secure the cabinet by arc welding. However, if
welding is necessary, make sure that the return wire is properly connected close to the
weld in order not to damage the electronic equipment in the cabinet. Do not inhale the
welding fumes.

Printed circuit boards

WARNING! Use a grounding wristband when you handle printed circuit boards. Do not touch the boards unnecessarily. The boards have components that are sensitive to electrostatic discharge.

Fiber optic cables

WARNING! Obey these instructions. If you ignore them, damage to the equipment can occur.

- Handle the fiber optic cables with care.
- When you disconnect the cables, always hold the connector, not the cable itself.
- Do not touch the ends of the fibers with bare hands as the ends are extremely sensitive to dirt.
- Do not bend the fiber optic cables too tightly. The minimum allowed bend radius is 35 mm (1.4 in).

Start-up and operation

These warnings are for all personnel who commission, plan the operation or operate the inverter.

WARNING! Obey these instructions to prevent injury or death, or damage to the equipment.

- Keep all doors of the inverter closed during operation. Keep the doors closed also when the inverter is in sleep mode. Open the doors only if you do commissioning or service work on the inverter. It is good safety practice to keep inverter and inverter housing doors locked to prevent unauthorized access. Give the keys only to authorized personnel.
- Close the inverter AC and DC main switches and miniature DC circuit breakers (option +H377) before start.
- Do not open the inverter AC or DC main switches or miniature DC circuit breakers (option +H377) when the inverter is running.
- Before you adjust the inverter and put it into service, make sure that all equipment is suitable for operation.
- The maximum permitted number of power-ups by applying power is five in ten minutes.
- Do not use the inverter in a manner not specified in this manual.
- Do not stay close to the inverter while the inverter is starting up or in running state. Adjust the start-up delay in a way that you have sufficient time to vacate the inverter room.

20 Safety instructions

Note:

- If an external source for the start command is selected and it is ON, the inverter will start immediately after a fault reset.
- When the control location is not set to Local (L not shown on the status row of the display), the stop key on the control panel will not stop the inverter. To stop the inverter using the control panel, press the LOC/REM key and then the stop key .

Introduction to the manual

Contents of this chapter

This chapter describes the intended audience and contents of the manual. It contains a flowchart of the steps in checking the delivery, installing and commissioning the inverter. The flowchart refers to chapters/sections in this manual and other manuals.

Target audience

This manual is intended for people who plan the installation, install, commission, use and service the inverter. Read the manual before you do work on the inverter. You are expected to know the fundamentals of electricity, wiring, electrical components and electrical schematic symbols.

The manual is written for readers worldwide. Both SI and imperial units are shown.

Contents of the manual

The chapters of the manual are briefly described below.

Safety instructions give safety instructions for the installation, commissioning, operation and maintenance of the inverter.

Introduction to the manual introduces the manual.

Operation principle and hardware description describes the operation principle and construction of the inverter in short.

Mechanical installation describes the mechanical installation procedure of the inverter.

Planning the electrical installation contains the instructions that you must obey when selecting the cables, protections, cable routing and way of operation for the inverter system.

Electrical installation describes the electrical installation process of the inverter.

Installation checklist contains a list for checking the mechanical and electrical installation of the inverter.

Start-up describes the start-up procedure of the inverter.

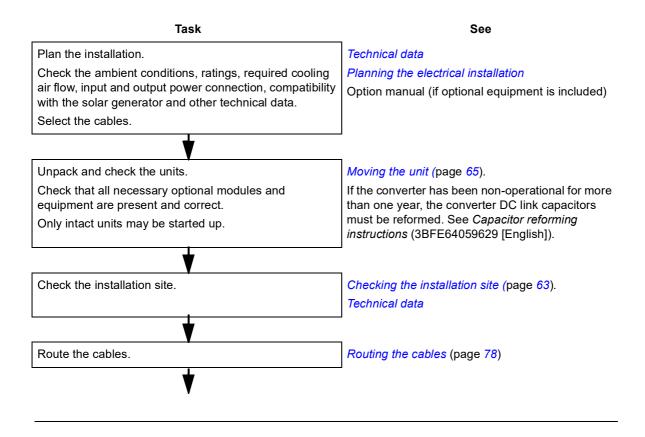
Fault tracing describes the fault tracing possibilities of the inverter.

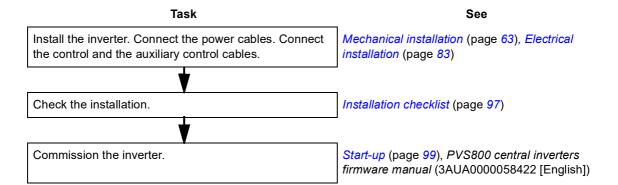
Maintenance contains preventive maintenance instructions of the inverter.

Technical data contains the technical data for the inverter.

Dimension drawings contains example dimension drawings of the inverter.

Related documents


See the inside of the front cover.


Categorization by frame size and option code

Some instructions, technical data, dimensions and weights which concern only certain inverter frame sizes are marked with the symbol of the frame size, such as R8i. The frame size is not marked on the inverter designation label. To identify the frame size of your unit, see the rating tables in chapter *Technical data*.

The instructions and technical data which concern only certain optional selections are marked with option codes, for example, +Q951. The options included in the inverter can be identified from the option codes visible on the type designation label. The option selections are listed in section *Type designation key* on page 58.

Quick installation, commissioning and operation flowchart

Terms and abbreviations

AINT Main circuit board inside the inverter module APBU Optical branching unit for fiber links that use the PPCS protocol. The unit is used for connecting parallel-connected inverter modules to the RDCU. DC input Connection point from solar array to inverter. One input consists of one positive and one negative terminal. DDCS Distributed drives communication system; a protocol used in optical fiber communication inside and between ABB drives and inverters. EMC Electromagnetic compatibility Frame (size) Relates to the construction type of the component in question. The term is often used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter Technical data. Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module In this manual, solar power system components based on photovoltaic effect are called solar cell, solar module, solar array, solar string and solar array junction box	Term/Abbreviation	Explanation
connecting parallel-connected inverter modules to the RDCU. DC input Connection point from solar array to inverter. One input consists of one positive and one negative terminal. DDCS Distributed drives communication system; a protocol used in optical fiber communication inside and between ABB drives and inverters. EMC Electromagnetic compatibility Frame (size) Relates to the construction type of the component in question. The term is often used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter Technical data. IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	AINT	Main circuit board inside the inverter module
DDCS Distributed drives communication system; a protocol used in optical fiber communication inside and between ABB drives and inverters. EMC Electromagnetic compatibility Frame (size) Relates to the construction type of the component in question. The term is often used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter Technical data. Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module In this manual, solar power system components based on photovoltaic effect are	APBU	
EMC Electromagnetic compatibility Frame (size) Relates to the construction type of the component in question. The term is often used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter Technical data. IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module In this manual, solar power system components based on photovoltaic effect are	DC input	
Frame (size) Relates to the construction type of the component in question. The term is often used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter <i>Technical data</i> . IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module In this manual, solar power system components based on photovoltaic effect are	DDCS	
used in reference to a group of components that share a similar mechanical construction. To determine the frame size of a component, refer to the rating tables in chapter <i>Technical data</i> . IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module In this manual, solar power system components based on photovoltaic effect are	EMC	Electromagnetic compatibility
IGBT Insulated gate bipolar transistor; a voltage-controlled semiconductor type widely used in inverters due to its easy controllability and high switching frequency. Inverter A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	Frame (size)	used in reference to a group of components that share a similar mechanical
used in inverters due to its easy controllability and high switching frequency. A cabinet-built entity containing all inverter modules together with their control electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are		· · · · · · · · · · · · · · · · · · ·
electronics, and I/O and auxiliary components. The inverter module converts the DC voltage to AC voltage. Its operation is controlled by switching the IGBTs. I/O Input/Output MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	IGBT	
MCB Miniature circuit breaker MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	Inverter	electronics, and I/O and auxiliary components. The inverter module converts the DC
MPPT Maximum power point tracking. Inverter software function that automatically operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	I/O	Input/Output
operates the photovoltaic generator at its maximum power point. NAMU Auxiliary measuring unit PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	МСВ	Miniature circuit breaker
NDPA PC card, DDCS communication board; PC communication hardware for DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	MPPT	
DriveWindow NDPC Optical transmitter/receiver; PC communication hardware for DriveWindow NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	NAMU	Auxiliary measuring unit
NETA Ethernet adapter module Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	NDPA	
Photovoltaic cell, In this manual, solar power system components based on photovoltaic effect are	NDPC	Optical transmitter/receiver; PC communication hardware for DriveWindow
	NETA	Ethernet adapter module
string, array and as defined below.	Photovoltaic cell, generator, module, string, array and array junction box	called solar cell, solar module, solar array, solar string and solar array junction box
PGND Grounding monitoring board	PGND	Grounding monitoring board

24 Introduction to the manual

Term/Abbreviation	Explanation
PLC	Programmable logic controller
PPCS	Power plate communication system; a protocol used in the optical fiber link that controls the output semiconductors of an inverter module
RAIO	Analog I/O extension module
RDCO	DDCS communication module that can be snapped on the RMIO board to add the available fibre optic channels.
RDCU	Control unit. The RDCU is a separate unit consisting of an RMIO board built in a plastic housing.
RDIO	Digital I/O extension module
RFI	Radio-frequency interference
RMIO	Control and I/O board inside the RDCU control unit
RUSB	USB-DDCS adapter for connecting the DriveWindow PC tool to the inverter. The adapter is connected to the USB port of the PC and to the fiber optic channel of the RDCO.
Solar array	Group of parallel-connected solar strings
Solar array junction box	Device that connects outputs of multiple solar source circuits (strings) into a combined output circuit or circuits
Solar cell	Device that converts light directly into electricity by the photovoltaic effect
Solar generator	The total of all solar strings of a solar power supply system, which are electrically interconnected
Solar module	Packaged interconnected assembly of solar cells
Solar string	Circuit of series-connected solar modules
THD	Total harmonic distortion

Operation principle and hardware description

Contents of this chapter

This chapter gives a short description of the inverter's operation principle and construction.

Product overview

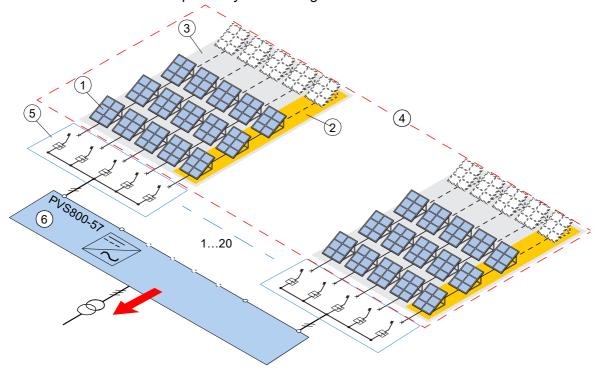
The PVS800-57 is a central inverter for converting, adjusting and conveying power generated by a solar generator to the electrical power system.

The inverter is built in an air-cooled cabinet for indoor use. Cooling air is let in through the gratings at the lower part of the cabinet door. The air outlet is at the cabinet roof.

PVS800-57-0100kW

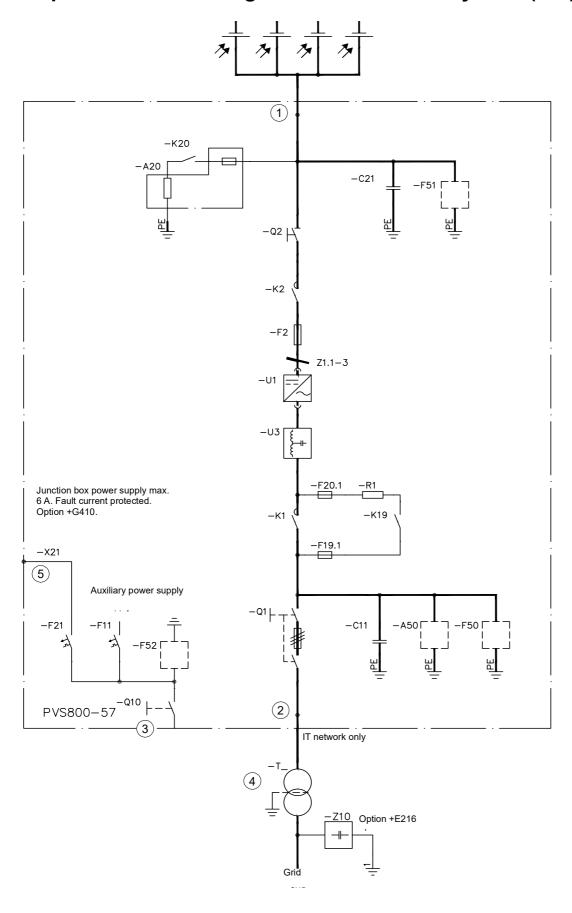
PVS800-57-0250kW and PVS800-57-0315kW

PVS800-57-0500kW and PVS800-57-0630kW



PVS800-57-0875kW and PVS800-57-1000kW

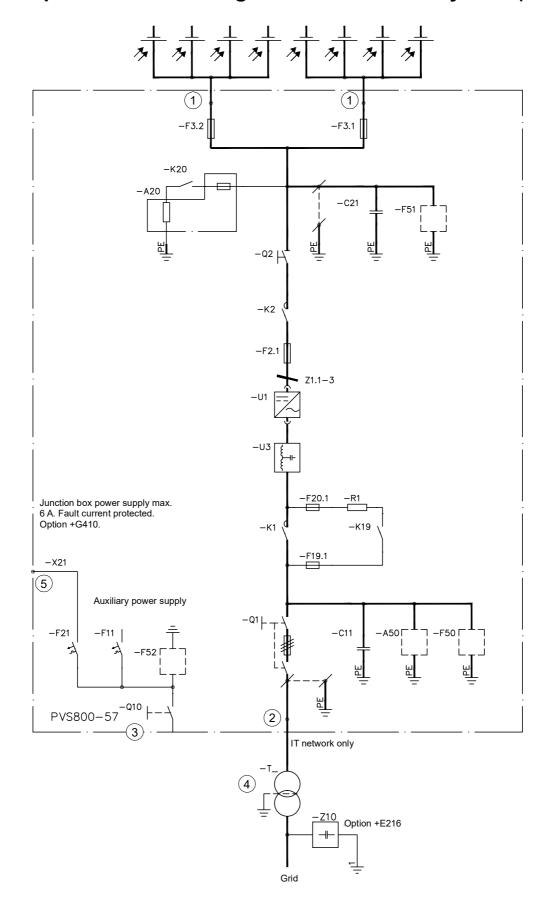
As standard, the solar generator is connected to the DC input terminals of the inverter with busbars and fuse links. Miniature circuit breakers can be used for connecting solar array junction boxes as option (+H377) for PVS800-57-0100kW.


Block diagram of solar generator system

A block diagram of a solar generator system where the solar module string arrays are connected to the electrical power system through an inverter is shown below.

- 1 Solar module (photovoltaic module)
- 2 Solar string
- 3 Solar array
- 4 Solar generator
- 5 Solar array junction box
- Inverter

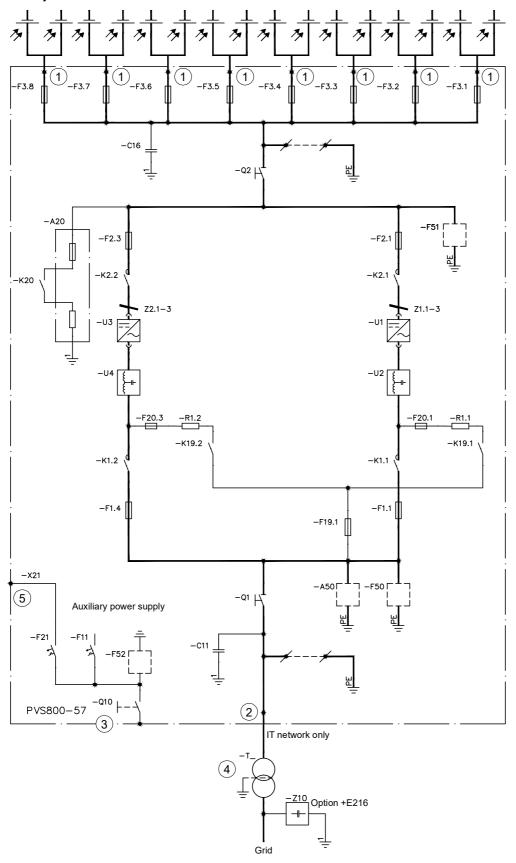
Example main circuit diagram of the inverter system (R7i)

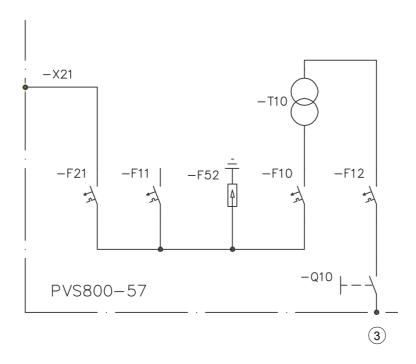


Symbol	Terminal/Component	Description/Operation
1	DC input terminals	The solar generator is connected to the inverter DC input terminals with busbars or through miniature circuit breakers (option +H377).
2	AC output	The AC output terminals connect the inverter to the low-voltage AC power system.
3	Auxiliary control voltage input	The customer supplies 230 V AC 1-phase auxiliary control voltage to the inverter circuit boards, cooling fan(s) and contactor control circuits.
4	Transformer	The transformer connects the inverter AC side to the low-voltage or medium voltage distribution network.
5	Junction box power supply (option +G410)	The inverter supplies power to the junction box through terminal X21. Max 6 A. Fault current protected.
A20	Grounding board (with options +F282 and +F283)	Provides fuse protection and current monitoring. See section Positive or negative pole grounding (options +F282 and +F283) on page 42.
A50	Varistors	For overvoltage protection
C11 C21	EMC filter capacitor	Reduces electromagnetic interference.
F2	Inverter DC fuses	Protect the inverter module.
F50 F51 F52	Overvoltage protection devices (F50 with option +F263 only)	Devices for overvoltage protection against for example climatic overvoltages caused by lightning strikes.
K1	AC contactor	The inverter controls the AC contactor according to the operational state.
K2	DC contactor	The inverter controls the DC contactor according to the operational state. The solar generator is disconnected from the inverter when needed.
K19 R1 F19.1 F20.1	Charging circuit	The inverter controls the charging contactor after receiving a start command.
K20	Grounding contactor (with options +F282 and +F283)	The inverter software controls the disconnection of the positive/negative pole grounding. See section <i>Positive or negative pole grounding (options +F282 and +F283)</i> on page 42.
Q1	AC main switch- disconnector with fuses	Hand-operated switch which connects the inverter to the electrical power system. The switch includes AC main fuses. The AC main switch-disconnector can be operated at all times. If it is operated during operation, the inverter will trip as the grid disappears.
Q2	DC main switch	Hand-operated switch which connects the inverter to the solar generator. The switch is interlocked with the DC contactor so that it will not open unless the DC contactor is open. If there is no auxiliary power in the inverter, the switch cannot be operated at all. It will remain in the position where it already is.
Q10	Auxiliary control voltage switch	Hand-operated switch which connects the auxiliary control voltage to the inverter.

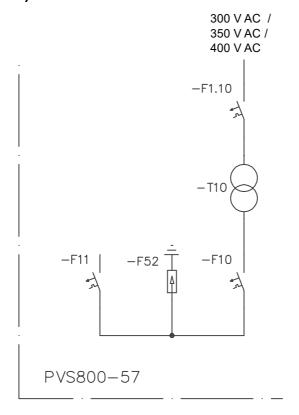
30 Operation principle and hardware description

Symbol	Terminal/Component	Description/Operation
U1	Inverter module	Converts the DC voltage to AC voltage. The operation is controlled by switching the IGBTs.
U3	LCL filter	Smooths the current and voltage waveform.
Z1.1-3	Common mode filter	Reduces common mode voltages and currents in the solar generator and inverter main circuit and AC output.
Z10	EMC filter (option +E216)	EMC filter for low voltage distribution networks.


Example main circuit diagram of the inverter system (R8i)

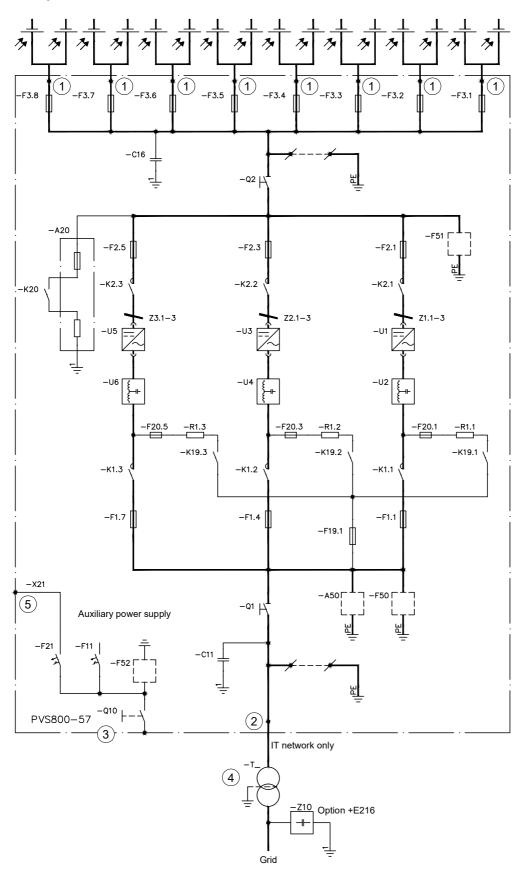

Symbol	Terminal/Component	Description/Operation
1	DC input terminals	The solar generator is connected to the inverter DC input terminals with busbars and fuse links.
2	AC output	The AC output terminals connect the inverter to the low-voltage AC power system.
3	Auxiliary control voltage input	The customer supplies 230 V AC 1-phase auxiliary control voltage to the inverter circuit boards, cooling fan(s) and contactor control circuits.
4	Transformer	The transformer connects the inverter AC side to the low-voltage or medium voltage distribution network.
5	Junction box power supply (option +G410)	The inverter supplies power to the junction box through terminal X21. Max 6 A. Fault current protected.
A20	Grounding board (with options +F282 and +F283)	Provides fuse protection and current monitoring. See section Positive or negative pole grounding (options +F282 and +F283) on page 42.
A50	Varistors	For overvoltage protection
C11 C21	EMC filter capacitor	Reduces electromagnetic interference.
F2.1	Inverter DC fuses	Protect the inverter module.
F3.x	Input DC fuses	Protect the DC input connections. The exact number of the fuses depends on the number of the DC input connections.
F50 F51 F52	Overvoltage protection devices (F50 with option +F263 only)	Devices for overvoltage protection against for example climatic overvoltages caused by lightning strikes.
K1	AC contactor	The inverter controls the AC contactor according to the operational state.
K2	DC contactor	The inverter controls the DC contactor according to the operational state. The solar generator is disconnected from the inverter when needed.
K19 R1 F19.1 F20.1	Charging circuit	The inverter controls the charging contactor after receiving a start command.
K20	Grounding contactor (with options +F282 and +F283)	The inverter software controls the disconnection of the positive/negative pole grounding. See section <i>Positive or negative pole grounding (options +F282 and +F283)</i> on page 42.
Q1	AC main switch- disconnector with fuses	Hand-operated switch which connects the inverter to the electrical power system. The switch includes AC main fuses. The AC main switch-disconnector can be operated at all times. If it is operated during operation, the inverter will trip as the grid disappears.
Q2	DC main switch	Hand-operated switch which connects the inverter to the solar generator. The switch is interlocked with the DC contactor so that it will not open unless the DC contactor is open. If there is no auxiliary power in the inverter, the switch cannot be operated at all. It will remain in the position where it already is.

Symbol	Terminal/Component	Description/Operation
Q10	Auxiliary control voltage switch	Hand-operated switch which connects the auxiliary control voltage to the inverter.
U1	Inverter module	Converts the DC voltage to AC voltage. The operation is controlled by switching the IGBTs.
U3	LCL filter	Smooths the current and voltage waveform.
Z1.1-3	Common mode filter	Reduces common mode voltages and currents in the solar generator and inverter main circuit and AC output.
Z10	EMC filter (option +E216)	EMC filter for low voltage distribution networks.

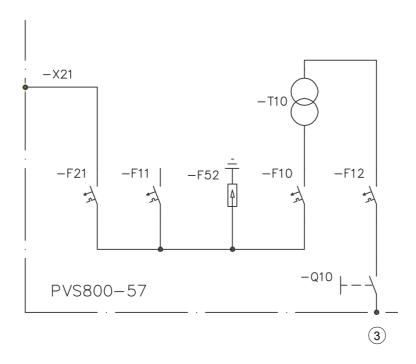

Example main circuit diagram of the inverter system (2 × R8i)

External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396, +G397 and +G398)

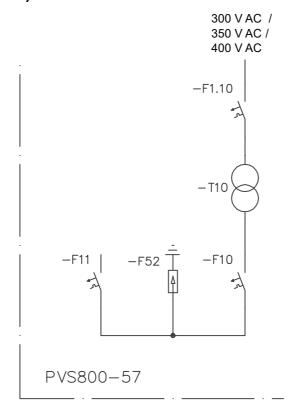
Auxiliary power supply from the inverter main circuit (option +G415)



Descriptions of symbols


Symbol	Terminal/Component	Description/Operation
1	DC input terminals	The solar generator is connected to the inverter DC input terminals with busbars and fuse links.
2	AC output	The AC output terminals connect the inverter to the low-voltage AC power system.
3	Auxiliary control voltage input	The customer supplies 230 V AC 1-phase auxiliary control voltage to the inverter circuit boards, cooling fan(s) and contactor control circuits. For other voltages, see section External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396, +G397 and +G398) on page 39.
4	Transformer	The transformer connects the inverter AC side to the low-voltage or medium voltage distribution network.
5	Junction box power supply (option +G410)	The inverter supplies power to the junction box through terminal X21. Max 6 A. Fault current protected.
A20	Grounding board (with options +F282 and +F283)	Provides fuse protection and current monitoring. See section Positive or negative pole grounding (options +F282 and +F283) on page 42.
A50	Varistors	For overvoltage protection
C11 C16	EMC filter capacitor	Reduces electromagnetic interference.
F1.1 F1.4	AC fuses	Protect the inverter module and main circuit components.
F2.1 F2.3	Inverter DC fuses	Protect the inverter module.
F3.x	Input DC fuses	Protect the DC input connections. The exact number of the fuses depends on the number of the DC input connections.
F50 F51 F52	Overvoltage protection devices (F50 with option +F263 only)	Devices for overvoltage protection against for example climatic overvoltages caused by lightning strikes.
K1.1 K1.2	AC contactors	The inverter controls the AC contactor according to the operational state.
K2.1 K2.2	DC contactors	The inverter controls the DC contactor according to the operational state. The solar generator is disconnected from the inverter when needed.
K19.1 K19.2 R1.1 R1.2 F19.1 F20.1 F20.3	Charging circuit	The inverter controls the charging contactors after receiving a start command.
K20	Grounding contactor (with options +F282 and +F283)	The inverter software controls the disconnection of the positive/negative pole grounding. See section <i>Positive or negative pole grounding (options +F282 and +F283)</i> on page 42.

Symbol	Terminal/Component	Description/Operation
Q1	AC main switch- disconnector	Hand-operated switch which connects the inverter to the electrical power system. The AC main switch-disconnector can be operated at all times. If it is operated during operation, the inverter will trip as the grid disappears.
Q2	DC main switch	Hand-operated switch which connects the inverter to the solar generator.
Q10	Auxiliary control voltage switch	Hand-operated switch which connects the auxiliary control voltage to the inverter.
T10	Auxiliary voltage transformer (with options +G396, +G397, +G398 and +G415)	Provides auxiliary voltage for the inverter circuit boards, cooling fans and contactor control circuits.
U1 U3	Inverter module	Converts the DC voltage to AC voltage. The operation is controlled by switching the IGBTs.
U2 U4	LCL filter	Smooths the current and voltage waveform.
Z1.1-3 Z2.1-3	Common mode filter	The filter reduces common mode voltages and currents in the solar generator and inverter main circuit and AC output.
Z10	EMC filter (option +E216)	EMC filter for low voltage distribution networks.


Example main circuit diagram of the inverter system (3 × R8i)

External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396, +G397 and +G398)

Auxiliary power supply from the inverter main circuit (option +G415)

Descriptions of symbols

Symbol	Terminal/Component	Description/Operation
1	DC input terminals	The solar generator is connected to the inverter DC input terminals with busbars and fuse links.
2	AC output	The AC output terminals connect the inverter to the low-voltage AC power system.
voltage input the F		The customer supplies 230 V AC 1-phase auxiliary control voltage to the inverter circuit boards, cooling fans and contactor control circuits. For other voltages, see section External 100 V AC, 115 V AC or 200 V AC auxiliary power supply (options +G396, +G397 and +G398) on page 39.
4	Transformer	The transformer connects the inverter AC side to the low-voltage or medium-voltage distribution network.
5	Junction box power supply (option +G410)	The inverter supplies power to the junction box through terminal X21. Max 6 A. Fault current protected.
A20	Grounding board (with options +F282 and +F283)	Provides fuse protection and current monitoring. See section Positive or negative pole grounding (options +F282 and +F283) on page 42.
A50	Varistors	For overvoltage protection.
C11 C16	EMC filter capacitor	Reduces electromagnetic interference.
F1.1 F1.4 F1.7	AC fuses	Protect the inverter module and main circuit components.
F2.1 F2.3 F2.5	Inverter DC fuses	Protect the inverter module.
F3.x	Input DC fuses	Protect the DC input connections. The exact number of the fuses depends on the number of the DC input connections.
F50 F51 F52	Overvoltage protection devices (F50 with option +F263 only)	Devices for overvoltage protection against, for example, climatic overvoltages caused by lightning strikes.
K1.1 K1.2 K1.3	AC contactors	The inverter controls the AC contactor according to the operational state.
K2.1 K2.2 K2.3	DC contactors	The inverter controls the DC contactor according to the operational state. The solar generator is disconnected from the inverter when needed.
K19.1 K19.2 K19.3 R1.1 R1.2 R1.3 F19.1 F20.1-6	Charging circuit	The inverter controls the charging contactors after receiving a start command.

Symbol	Terminal/Component	Description/Operation
K20	Grounding contactor (with options +F282 and +F283)	The inverter software controls the disconnection of the positive/ negative pole grounding. See section <i>Positive or negative pole grounding (options +F282 and +F283)</i> on page 42.
Q1	AC main switch	Hand-operated switch which connects the inverter to the electrical power system. The AC main switch can be operated at all times. If it is operated during operation, the inverter will trip as the grid disappears.
Q2	DC main switch	Hand-operated switch which connects the inverter to the solar generator.
Q10	Auxiliary control voltage switch	Hand-operated switch which connects the auxiliary control voltage to the inverter.
T10	Auxiliary voltage transformer (with options +G396, +G397, +G398 and +G415)	Provides auxiliary voltage for the inverter circuit boards, cooling fans and contactor control circuits.
U1 U3 U5	Inverter module	Converts the DC voltage to AC voltage. The operation is controlled by switching the IGBTs
U2 U4 U6	LCL filter	Smooths the current and voltage waveform.
Z1.1-3 Z2.1-3 Z3.1-3	Common mode filter	The filter reduces common mode voltages and currents in the solar generator and inverter main circuit and AC output.
Z10	EMC filter (option +E216)	EMC filter for low-voltage distribution networks.

Electrical power network supervision functions

The inverter control program includes electrical power network supervision functions. The inverter monitors, for example, overvoltage, undervoltage, overfrequency, underfrequency and frequency change rate in the electrical power system. The functions are used for disconnecting the inverter from the power system in power system fault situations. The disconnecting times and frequency limits depend on the owner of the power system and local legislation.

The inverter also provides the electrical power network supervision functions with certified monitoring relays (options +Q969, +Q974, +Q975 and +Q980).

Positive or negative pole grounding (options +F282 and +F283)

The positive and negative pole grounding options can be used when solar modules require grounding of inverter DC poles. The grounding of the poles complies with standard IEC 62109-2. One DC line must be grounded for some thin-film photovoltaic module types and if required by country-specific regulations.

The grounding is always connected when auxiliary power is connected, except when the automatic photovoltaic generator insulation check is done before the inverter starts.

The grounding wire is protected by a fuse on the PGND-02 board. Due to personnel protection reasons, the grounding is disconnected when sudden level changes are monitored from the grounding wire current.

The grounding resistance can be adjusted by the user. For instructions, see page 101.

Reduced run operation in case of a hardware failure

If an inverter module or an LCL filter is out of order, it is possible to continue running the inverter with reduced output current. In this case the inverter controls only modules which are unbroken. Inverter output current is reduced in relation to the removed modules. For example, if one inverter module is broken in PVS800-57-1000kW-C, the inverter output current is reduced to 66.7% of the nominal current. Reduced run is not possible with inverters that have only one inverter module.

To operate the PVS800 with reduced run, you must remove the charging circuit fuses specified in the tables below. However, you do not have to remove the broken inverter module or LCL filter. This is possible because broken parts can be isolated with AC and DC contactors inside the PVS800 cabinet. For removing the broken component, obey the instructions in chapter *Maintenance*.

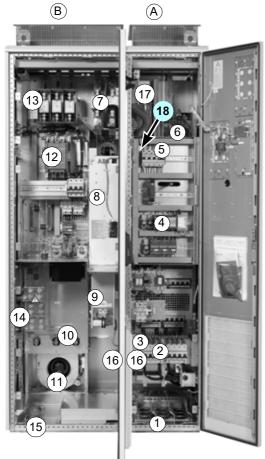
Inverter modules are divided into two control groups, which can be enabled or disabled according to the need. If a module group is disabled, the inverter modules which are part of that group are not used. The following tables list the possible control combinations in the reduced run operation.

PVS800-57-500kW-A and PVS800-57-630kW-B:

Inverter control unit parameter 16.05 USED MODULES	Description	Reduced output current	Charging circuit fuses to be removed
GROUP 1	Left inverter module (U1) is used.	50%	F20.3-4
GROUP 2	Right inverter module (U2) is used.	50%	F20.1-2
GROUPS 1 and 2 (default)	Left (U1) and right (U2) inverter modules are used.	100%	None

PVS800-57-875kW-B and PVS800-57-1000kW-C:

Inverter control unit parameter 16.05 USED MODULES	Description	Reduced output current	Charging circuit fuses to be removed
GROUP 1	Left inverter module (U1) is used.	33.3%	F20.3-6
GROUP 2	Middle (U3) and right (U5) inverter modules are used.	66.7%	F20.1-2
GROUPS 1 and 2 (default)	Left (U1), middle (U3) and right (U5) inverter modules are used.	100%	None

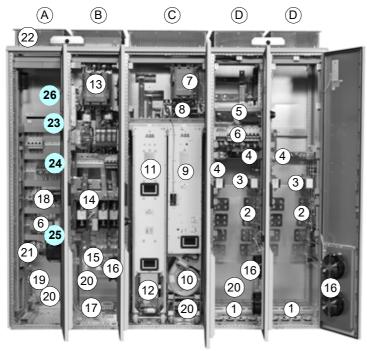

See PVS800 central inverters firmware manual (3AUA0000058422 [English]) for detailed instructions on how to enable the reduce run operation.

Layout drawings

The figures below show examples of cabinet layout for different frame sizes. Depending on the selected options, the actual equipment may differ from what is depicted below.

Cabinet layout of frame R7i

A cabinet of frame R7i is shown below with doors open and shrouds removed.


	Description
Α	Incoming cubicle
В	Inverter module cubicle
1	DC cable entries
2	Photovoltaic generator connection terminals
3	Auxiliary control voltage connection terminals and switch
4	Ground fault monitoring device (options +Q954 and +Q976)
5	Grid monitoring relay (options +Q969 and +Q974)
6	DC contactor
7	Inverter DC fuses
8	Inverter module
9	Inverter module cooling fan
10	LCL filter
11	LCL filter cooling fan
12	AC contactor
13	AC main switch-disconnector with fuses (Q1)
14	AC output (grid connection) terminals
15	AC output cable entries
16	Heating resistor (option +G300)
17	Junction box power supply (option +G410)

18	External control interfaces (behind the swing-out frame)
1	RDCU control unit (A41, inverter control unit)
2	RDCU control unit (A43, master control unit)

Cabinet layout of frame R8i

A cabinet of frame R8i is shown below with doors open and shrouds removed.

Cubicles	
Α	Auxiliary control cubicle
В	Output cubicle
С	Inverter module cubicle
D	Incoming cubicle

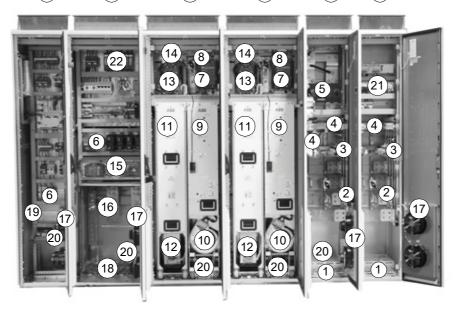
Exte	ernal control interfaces
23	RDCU control unit (A41, inverter control unit). Optional fieldbus adapter modules: +K454, +K458, +K466, +K479.
24	RDCU control unit (A43, master control unit)
25	NETA-x1 Intelligent Ethernet adapter (options +K464 and +K484)
26	VSN700-05 data logger (options +K485 and +K486)

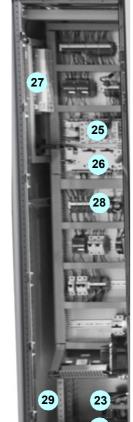
	Description
1	DC cable entries
2	DC input terminals (fuse protected)
3	Input DC fuses
4	Connecting knobs for temporary grounding of the DC busbars for work
5	DC main switch
6	Ground fault monitoring device (options +Q954 and +Q976)
7	DC contactor
8	Inverter DC fuses
9	Inverter module
10	Inverter module cooling fan
11	LCL filter
12	LCL filter cooling fan
13	AC contactor
14	AC main switch-disconnector with fuses (Q1)
15	AC output (grid connection) terminals with connecting knobs for temporary grounding for work
16	Cabinet fans (on the cubicle doors)
17	AC output cable entries
18	Grid monitoring relay (options +Q969, +Q974 and +Q980)
19	115/230 V auxiliary control voltage connection terminals and switch
20	Heating resistor (option +G300)
21	Junction box power supply (option +G410)
22	Roof fan

Cabinet layout of frame 2 × R8i

A cabinet of frame 2 × R8i is shown below with doors open and shrouds removed.

(A)


(B)

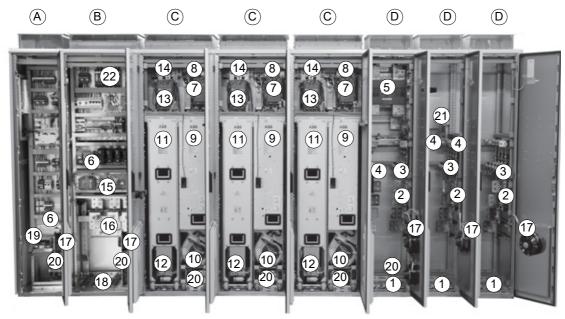

(C)

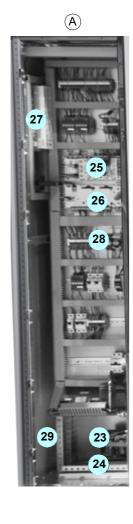
(C)

(D)

(D)

 \bigcirc


Cubicles	
Α	Auxiliary control cubicle
В	Output cubicle
С	Inverter module cubicle
D	Incoming cubicles


Exter	nal control interfaces
23	Junction box power supply (option +G410)
24	115/230 V auxiliary control voltage connection terminals and switch (Q10)
25	RDCU control unit (A41, inverter control unit). Optional fieldbus adapter modules: +K454, +K458, +K466, +K479.
26	RDCU control unit (A43, master control unit)
27	APBU branching unit
28	NETA-01 Intelligent Ethernet adapter module (option +K464)
29	NETA-21 remote monitoring tool (option +K484) and VSN700-05 data logger (options +K485 and +K486)

	Description					
1	DC cable entries					
2	DC input terminals (fuse protected)					
3	Input DC fuses					
4	Connecting knobs for temporary grounding of the DC busbars for work					
5	DC main switch					
6	Ground fault monitoring device (options +Q954, +Q976, +Q981 and +Q985)					
7	DC contactor					
8	Inverter DC fuses					
9	Inverter module					
10	Inverter module cooling fan					
11	LCL filter					
12	LCL filter cooling fan					
13	AC contactor					
14	AC fuses					
15	AC main switch-disconnector (Q1)					
16	AC output (grid connection) terminals with connecting knobs for temporary grounding for work					
17	Cabinet fans (on the cubicle doors)					
18	AC output cable entries					
19	Grid monitoring relay (options +Q969, +Q974, +Q975 and +Q980)					
20	Heating resistor (option +G300)					
21	AIMA I/O module adapter					
22	Charging circuit fuses					

Cabinet layout of frame 3 × R8i

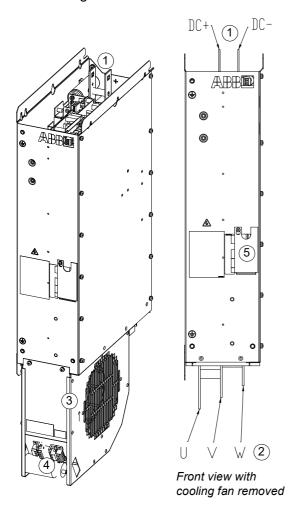
A cabinet of frame 3 × R8i is shown below with doors open and shrouds removed.

Cubicles	
Α	Auxiliary control cubicle
В	Output cubicle
С	Inverter module cubicle
D	Incoming cubicles

Exter	nal control interfaces			
23	Junction box power supply (option +G410)			
24	115/230 V auxiliary control voltage connection terminals and switch (Q10)			
25	RDCU control unit (A41, inverter control unit). Optional fieldbus adapter modules: +K454, +K458, +K466, +K479.			
26	RDCU control unit (A43, master control unit)			
27	APBU branching unit			
28	NETA-01 Intelligent Ethernet adapter module (option +K464)			
29	NETA-21 remote monitoring tool (option +K484) and VSN700-05 data logger (options +K485 and +K486)			

	Description				
1	DC cable entries				
2	DC input terminals (fuse protected)				
3	Input DC fuses				
4	Connecting knobs for temporary grounding of the DC busbars for work				
5	DC main switch				
6	Ground fault monitoring device (options +Q954, +Q976, +Q981 and +Q985)				
7	DC contactor				
8	Inverter DC fuses				
9	Inverter module				
10	Inverter module cooling fan				
11	LCL filter				
12	LCL filter cooling fan				
13	AC contactor				
14	AC fuses				
15	AC main switch-disconnector (Q1)				
16	AC output (grid connection) terminals with connecting knobs for temporary grounding for work				
17	Cabinet fans (on the cubicle doors)				
18	AC output cable entries				
19	Grid monitoring relay (options +Q969, +Q974, +Q975 and +Q980)				
20	Heating resistor (option +G300)				
21	AIMA I/O module adapter				
22	Charging circuit fuses				

Door devices

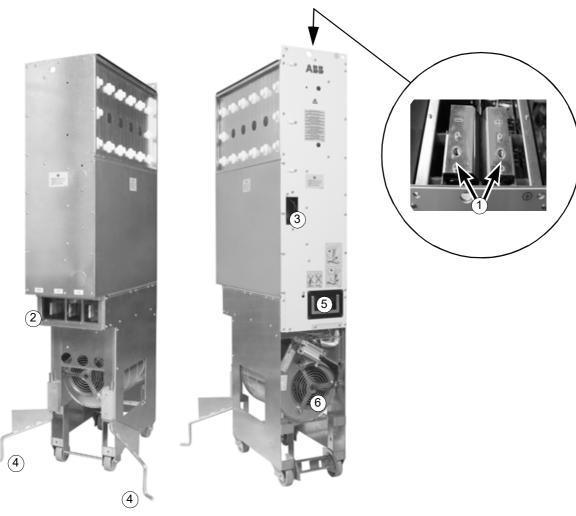

The cabinet doors are equipped with:

- an inverter control panel
- AC and DC main switch operating handles
- an emergency stop push button in frames 2 × R8i and 3 × R8i (option +Q951 in R7i and R8i)
- an emergency stop reset button (with option +Q951) and ground fault indication/reset button (with option +Q954) in frame R7i and R8i.

The emergency stop push button is wired to digital input DI6 of inverter control unit A43. When the button is pushed, switch S20 in the control circuit opens, and the DI6 status changes to zero. The inverter stops modulating and opens the AC and DC contactors.

Inverter module (R7i)

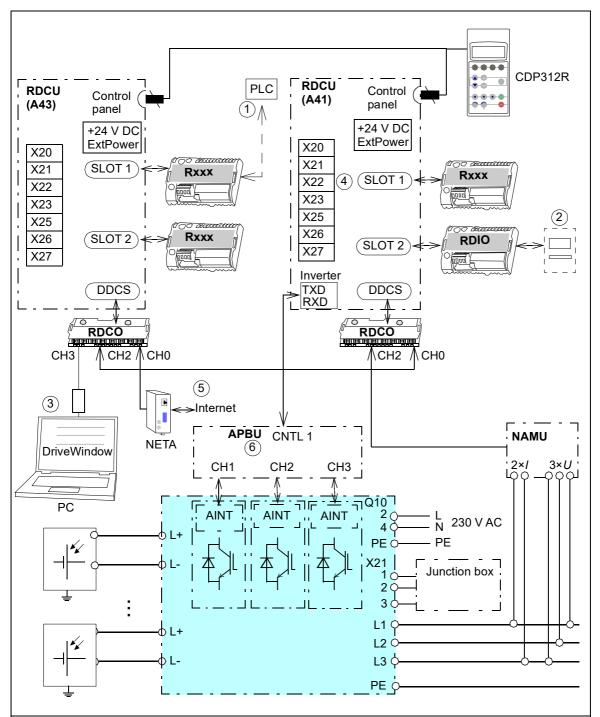
The cooling fan at the base of the inverter module is fed from the auxiliary voltage supply.



	Description
1	DC (input) connections
2	Output busbars
3	Cooling fan
4	Power connection for cooling fan (X41)
5	Fiber optic connectors

Inverter module (R8i)

The modules run on wheels, which, along with the quick connector at the AC output, enable quick replacement of a module for maintenance.


The inverter module is equipped with a speed-controlled cooling fan involving a power supply board and a fan inverter board that outputs a frequency in the range of 15 ... 55 Hz to the fan. The fan is regulated according to the temperature of the output stage of the module. The power to the fan is supplied from the intermediate DC circuit.

Item	Explanation			
1	DC (input) connections			
2	AC output busbars. They match the quick connector socket mounted in the cubicle.			
3	Fiber optic connectors of the AINT board. Connected to the RDCU control unit.			
4	Retractable support legs			
5	Handle			
6	Cooling fan			

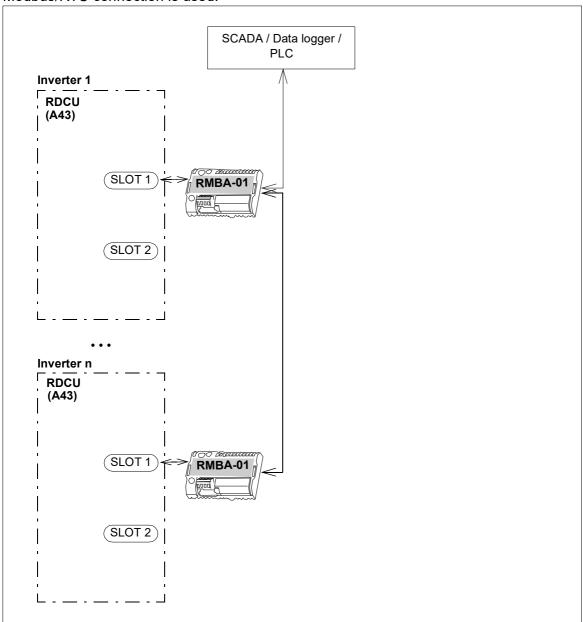
Connections and interfaces overview

The diagram below shows the power connections and control interfaces of the PVS800-57 inverters.

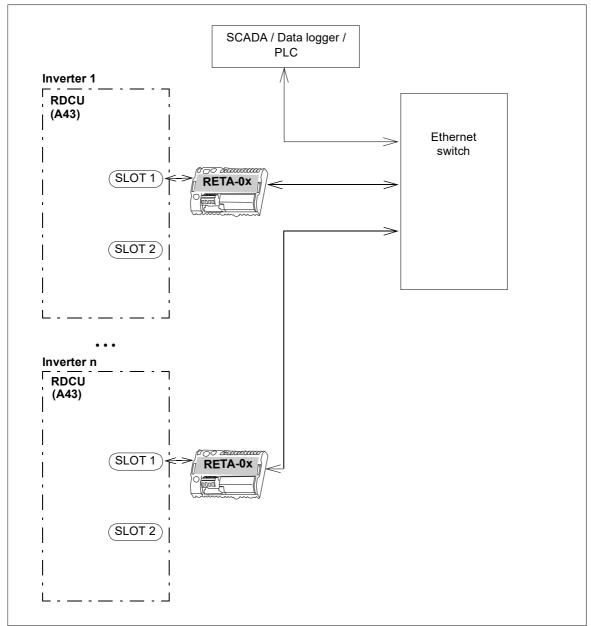
¹⁾ Monitoring and/or controlling of the inverter; ²⁾ Grid monitoring relay (option +Q969, +Q974, +Q975 or +Q980):

³⁾ See page 96; 4) Ground fault monitoring (option +Q954, +Q976, +Q981 or +Q985)

⁵⁾ Remote monitoring (default connection). For ring topology, see the firmware manual for the required parameter settings.


 $^{^{6)}}$ APBU branching unit and connection to AINT boards through APBU only in frames 2 × R8i and 3 × R8i. In frames 1 × R7i and 1 × R8i, the fiber optic cables from A41 are connected directly to AINT. 2 × R8i uses channels CH1 and CH2 for the connection.

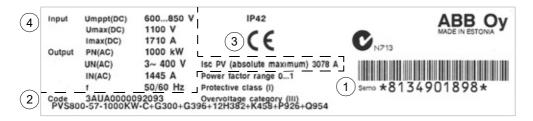
See chapter *Electrical installation* for the wiring instructions and section *Control unit* (RDCU/RMIO) connection data on page 140 for the control unit specifications. For more information on the connections, see the circuit diagrams delivered with the inverter.


Device	Description		
RDCU	Master control unit equipped with the RMIO board containing the PVS800 solar		
(A43)	inverter master control program.		
Terminal bloc	k		
X20, X21	Reference voltage ±10 V DC		
X21	Analog inputs (3 pcs) and outputs (2 pcs)		
X22	Digital inputs (7 pcs)		
X23	Auxiliary voltage output and input 24 V DC		
X25X27	Relay outputs (3 pcs)		
+24 V DC ExtPower	External power input		
Slot 1			
Rxxx-0x	Fieldbus adapter module RETA-01, RETA-02, RPBA-01 or RMBA-01		
Slot 2			
Rxxx-0x	Fieldbus adapter module RMBA-01		
DDCS	·		
RDCO-0x	DDCS communication adapter module		
PC	For using the inverter PC tools		
NETA-0x	Ethernet adapter module for Internet browser-based remote monitoring of the inverter		
RDCU	Inverter control unit equipped with the RMIO board containing the PVS800 solar		
(A41)	inverter control program.		
Terminal bloc	k		
X20, X21	Reference voltage 24 V DC		
X21	Analog inputs and outputs (5 pcs) Reserved. Contact ABB, if need to be used.		
X22	Digital inputs (7 pcs), one input reserved for the optional ground fault monitoring		
X23	Auxiliary voltage output and input 24 V DC		
X25X27	Relay outputs (3 pcs)		
+24 V DC	External power input		
ExtPower			
	slot is reserved for 2 × R8i and 3 × R8i units.)		
SLOT 2			
RDIO-01	RDIO-01 Reserved for inverter control and grid monitoring relay signals.		
DDCS			
RDCO-01	DDCS communication adapter module		

Connection examples

The diagram below shows a connection example for SCADA, PLC or data logger when a Modbus/RTU connection is used.

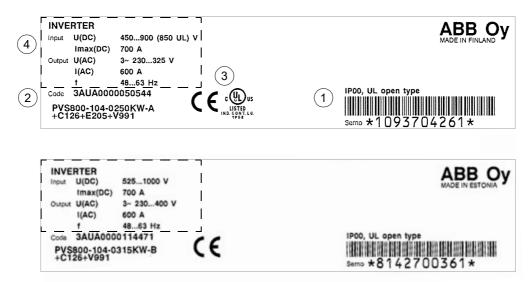
The diagram below shows a connection example for SCADA, PLC or data logger when a Modbus/TCP connection is used.


CDP-312R control panel

The CDP-312R is the user interface of the inverter unit, providing the essential controls such as Start/Stop/Reset/Reference, and the parameter settings for the inverter control programs. The control panel is connected to the RDCU units. For information on using the control panel, refer to the firmware manual.

Type designation labels

Inverter label


The type designation label of the inverter includes the ratings, valid markings, a type designation and a serial number, which allow individual recognition of each inverter. The type designation label is located on the front cover of the inverter cabinet. An example label is shown below.

No.	Description
1	Serial number. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit's manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two units with the same number.
2	Type designation, see section Type designation key below.
3	Valid markings
4	Ratings of inverter

Inverter module label

The type designation label of the inverter module includes the ratings, valid markings, a type designation and a serial number. The module label is attached to the front panel of the inverter module. Example labels are shown below.

No.	Description
1	Serial number. The first digit of the serial number refers to the manufacturing plant. The next four digits refer to the unit's manufacturing year and week, respectively. The remaining digits complete the serial number so that there are no two modules with the same number.
2	Type designation
3	Valid markings
4	Ratings of inverter module

Type designation key

The type designation contains information on the specifications and configuration of the inverter. The first digits from left show the basic configuration, for example, PVS800-57-250kW-A. The optional selections are given thereafter, separated by plus signs, for example, +Q951. The main selections are described below. Not all selections are available for all types. For more information, refer to the PVS800-57 ordering information, which is available on request.

Types -0100kW-A to -0315kW-B

Selection	Alternatives		
Product series	PVS800		
Туре	Cabinet-built central inverter. Bottom entry and exit of cables protection: IP42 (UL Type 2). When no options are selected:		
		AC output: Floating (IT) AC output, AC main contactor, fuse-switch (100 kW), fuse switch-disconnector (250 315 kW), AC output overvoltage protection (varistors), AC output busbars, AC grounding terminals on output busbars (250315 kW). DC input: Floating DC input, number of DC inputs must be selected with option code, DC main contactor(s) and DC side switch-disconnector, DC grounding terminals on input busbars (250 315 kW), DC fuses (100 kW), gPV fuses (250 315 kW), DC input overvoltage/surge protection, maximum open circuit DC voltage 1000 V DC. Control / auxiliary: 230 V external control voltage, CDP312 control panel, RDCO-03 module, coated boards, GSXR/ISXR master- and inverter software. Grid support functionalities: Low/High Voltage Ride Through, anti-islanding, reactive power control functionality, grid monitoring, reactive power production during the night. Low Voltage Ride Through requires non-interrupted auxiliary power supply. CE-marked according to LV and EMC. Warranty 12/24 months (commissioning/manufacturing).	
Nominal AC power	xxxkW	Refer to the rating tables, page 125.	
Voltage	Α	300 V AC (operational [MPPT] DC voltage range 450825 V DC)	
	В	350 V AC (operational [MPPT] DC voltage range 525825 V DC)	
Option codes (plus codes))		
Filters	E216	EMC/RFI filter for the network side of low voltage networks	of the transformer on TN (grounded)
Cabinet and construction	C178	VDE approved	
options	G300	Cabinet heater	
	G396	Auxiliary power supply, 100 V, for 250 315 kW units	Only one of options G396, G397, G398 can be selected. If option
	G397	Auxiliary power supply, 115 V, for 250 315 kW units	G415 is selected, options G396, G397, G398 cannot be selected.
	G398	Auxiliary power supply, 200 V, for 250 315 kW units	
	G410	Junction box power supply	
	J401	Inverter monitoring display	
Line options F263 Advanced AC output overvoltage		and surge protection	
	F282	Grounding, positive DC	
	F283	Grounding, negative DC	
	0F291	No input DC fuses	

Selection	Alternat	tives		
Cabling	H377	MCB-protected DC input connections: 4 × miniature circuit breakers for 100 kW units		
	H382	1 × fuse-protected DC input connections for 100 kW units		
	2H382	2 × fuse-protected DC input connections for 250 315 kW units		
	4H382	4 × fuse-protected DC input connections for 250 315 kW units		
	8H382	8 × fuse-protected DC input connections for 250 315 kW units		
Fieldbus	K454	RPBA-01 PROFIBUS DP adapter module	Slot 1: Only one of options K454, K458, K466, K467 can be selected.	
	K458	RMBA-01 Modbus adapter module (Slot 1)		
	K464	NETA-01 Intelligent Ethernet adapter module		
	K466	RETA-01 Ethernet/IP™ and Modbus/TCP adapter module		
	K467	RETA-02 Ethernet PROFINET IO and Modbus TCP/IP™ adapter module		
	K484	NETA-21 remote monitoring tool and NEXA-21 extension unit for DDCS		
	K485	VSN700-05 data logger and RMBA-	VSN700-05 data logger and RMBA-01 Modbus adapter module	
	K486	/SN700-05 data logger and RETA-01 Ethernet/IP™ and Modbus/TCF adapter module		
Specialities	P902	Customized		
	P926	Extended warranty 24/30 months		
	P927	Extended warranty 36/42 months		
	P928	Extended warranty 60/66 months	Requires cabinet heating option +G300.	
Safety options	Q951	Emergency stop	<u> </u>	
	Q954	Ground fault monitoring in IT (ungrounded) systems (Bender Iso-PV)		
	Q976	Ground fault monitoring in IT (ungrounded) systems (ABB CM-IWN.5)	Maximum altitude 3000 m (9840 ft).	
	Q980	Grid monitoring relay, BDEW approv	ved, for 500 kW and 630 kW units	
	Q969	Grid monitoring relay, ENEL approved		
	Q974	Grid monitoring relay, VDE0126 approved		
Documentation language R701		German		
(delivered set may	R702	Italian		
include manuals in	R707	French		
English)	R708	Spanish		
	R711	Russian		

Types -0500kW-A to -1000kW-C

Selection	Alternat	Iternatives		
Product series	PVS800	0		
Туре	57	Cabinet-built central inverter. Bottom entry and exit of cables. Degree of protection: IP42 (UL Type 2). When no options are selected: AC output: Floating (IT) AC output, AC main contactor, AC side switch-disconnector, AC output overvoltage protection (varistors), AC grounding terminals on output busbars.		
	DC input: Floating DC input, number of DC inputs must be with option code, DC main contactors and DC side switch-disconnector, DC grounding terminals on input busbars, gPV heavy-duty DC input overvoltage/surge protection (type 1+2), open circuit DC voltage 1100 V DC.			
		Control / auxiliary: 230 V external control voltage, CDP312 control pa RDCO-03 module, coated boards, GSXR/ISXR master- and inverter software.		
		Grid support functionalities: Low/High Voltage Ride Through, anti- islanding, reactive power control functionality, grid monitoring, reactive power production during the night. CE-marked according to LV and EMC. Warranty 12/24 months (commissioning/manufacturing).		
Nominal AC power	xxxkW	Refer to the rating tables, page 125.		
Voltage	В	350 V AC (operational [MPPT] DC voltage range 525 825 V DC)		
	С	400 V AC (operational [MPPT] DC	voltage range 600 850 V DC)	
Option codes (plus codes))			
Filters	E216	EMC/RFI filter for the network side of the transformer on TN (grounded) low voltage networks		
Cabinet and construction options	C175	Container option for PVS800-IS	Must be selected for PVS800-IS PVS1 and PVS2.	
	C176	Doors with hinges on the left side for PVS800-IS	Must be selected for PVS800-IS PVS2.	
	C178	VDE approved		
	G300	Cabinet heater		
	G396	Auxiliary power supply, 100 V	Only one of options G396, G397,	
	G397	Auxiliary power supply, 115 V	G398 can be selected. If option	
	G398	Auxiliary power supply, 200 V	G415 is selected, options G396, G397, G398 cannot be selected.	
	G410	Junction box power supply		
	G415	Auxiliary power supply from inverte	r output	
	G416	Current transducers for all DC inputs. Voltage signals to an external controller.		
	G417	Current transducers for all DC inputs. Internally monitored and supervised.	Max. 16 DC inputs.	
	G420	Fuse indicator		
Line options	F263	Advanced AC output overvoltage and surge protection		
	F282	Grounding, positive DC		
	F283	Grounding, negative DC		
	0F291	No input DC fuses		

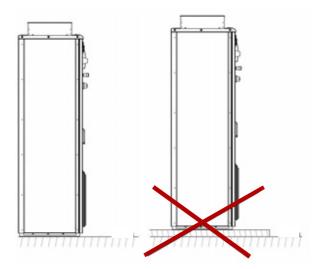
Selection	Alternat	ives		
Cabling	4H382	H382 4 × fuse-protected DC input connections for 500 630 kW units		
	5H382	5 × fuse-protected DC input connections for 500 630 kW units		
	8H382	8 × fuse-protected DC input connections for 500 1000 kW units		
	10H382	10 × fuse-protected DC input connections for 500 1000 kW units		
	12H382			
	15H382	·		
	16H382	16 × fuse-protected DC input connections for 875 1000 kW units		
	20H382	20 × fuse-protected DC input connections for 875 1000 kW units		
Fieldbus	K454	RPBA-01 PROFIBUS DP adapter module	Slot 1: Only one of options K454, K458, K466, K467 can be selected.	
	K458	RMBA-01 Modbus adapter module		
	K464	NETA-01 Intelligent Ethernet adapter module		
	K466	RETA-01 Ethernet/IP™ and Modbus/TCP adapter module		
	K467	RETA-02 Ethernet PROFINET IO and Modbus TCP/IP™ adapter module		
	K484	NETA-21 remote monitoring tool and NEXA-21 extension unit for DDCS		
	K485	VSN700-05 data logger and RMBA-01 Modbus adapter module		
	K486	VSN700-05 data logger and RETA- 01 Ethernet/IP™ and Modbus/TCP adapter module		
Specialities	P902	Customized	L	
	P926	Extended warranty 24/30 months		
	P927	Extended warranty 36/42 months		
	P928	Extended warranty 60/66 months	Requires cabinet heating option +G300.	
Safety options	Q954	Ground fault monitoring in IT (ungrounded) systems (Bender Iso-PV)		
	Q976	Ground fault monitoring in IT (ungrounded) systems (ABB CM-IWN.5)	Maximum altitude 3000 m (9840 ft).	
	Q981	Ground fault monitoring in IT (ungrounded) systems (ABB CM-IWN.6S)		
	Q985	Ground fault monitoring in IT (ungro	unded) systems (ABB MIRU-01)	
	Q969	Grid monitoring relay, ENEL approved		
	Q974	Grid monitoring relay, VDE0126 approved		
	Q975	Grid monitoring relay, UK G59 approved		
	Q980	Grid monitoring relay, BDEW approved		
Documentation language	R701	German		
(delivered set may	R702	Italian		
include manuals in English)	R707	French		
	R708	Spanish		
	R711	Russian		
	·	l		

62	Operation principle and hardware description				

Mechanical installation

Contents of this chapter

This chapter describes the mechanical installation procedure of the inverter.


Checking the installation site

See section Ambient conditions on page 146 for allowable operating conditions, and section Dimensions, weights and free space requirements on page 134 for requirements for free space around the unit.

The floor that the unit is installed on must be of non-flammable material, as smooth as possible, and strong enough to support the weight of the unit. The floor flatness must be checked with a spirit level before the installation of the cabinets into their final position. The maximum allowed deviation from the surface level is 5 mm (0.2 in) for every 3 m (10 ft). The installation site should be levelled, if necessary, as the cabinet is not equipped with adjustable feet.

Note: For easy maintenance, do not install the inverter on a higher level than the floor in front of it. If the inverter is placed higher, the ramp supplied with the inverter cannot be used when replacing an inverter module.

The wall behind the unit must be of non-flammable material.

Required tools

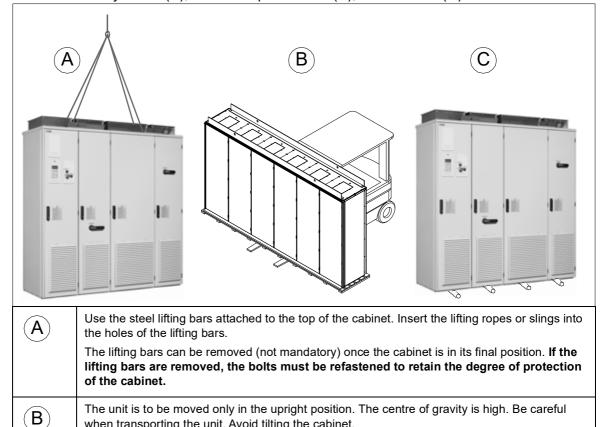
The tools required for moving the unit to its final position, fastening it to the floor and tightening the connections are listed below:

- crane, fork-lift or pallet truck with sufficient load capacity; iron bar, jack and rollers
- Pozidrive and Torx (2.5 ... 6 mm) screwdrivers for the tightening of the frame screws
- torque wrench
- set of wrenches and sockets.

Checking the delivery

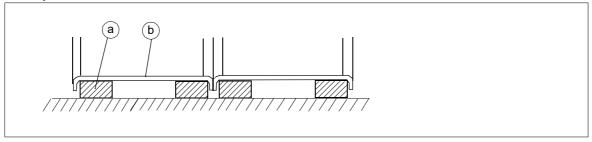
The inverter delivery contains:

- inverter cabinet line-up
- optional modules (if ordered) installed onto the RDCU control units
- ramp for the inverter module replacement (frame R8i)
- appropriate inverter manuals and optional module manuals
- delivery documents.


Make sure that there are no signs of damage. Manuals and other loose parts are delivered inside the inverter. Before attempting installation and operation, check the information on the type designation label of the inverter to verify that the delivery is of the correct type. See sections *Type designation labels* on page 56 and *Type designation key* on page 58.

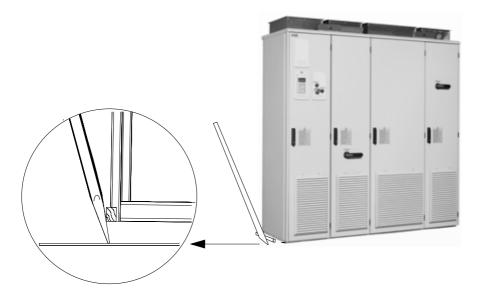
Moving the unit

the unit.


Move the unit by crane (A), fork-lift or pallet truck (B), or on rollers (C) as shown below.

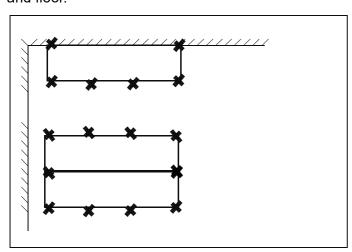
If the cabinet needs to be laid on its back, it must be supported from below beside the cubicle seams as shown below. a) support, b) cabinet back panel. Note: Transportation of a unit on its back is only allowed if the unit is equipped for such transportation at the factory.

If using a pallet truck, make sure that its load capacity is sufficient before attempting to move


when transporting the unit. Avoid tilting the cabinet.

Placing the unit

Move the cabinet into its final position with an iron bar and a piece of wood at the bottom edge of the cabinet. Place the wooden piece properly in order not to damage the cabinet frame!



Overview of the installation process

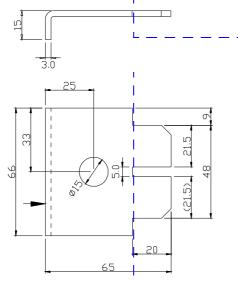
The unit must be installed in an upright vertical position. It can be installed with its back against a wall, or back-to-back with another unit and side by side. Fasten the cabinet to the floor (and roof) as described under *Fastening the cabinet to the floor*, page 67.

Note 1: Leave required free space around the unit. See page 134.

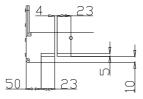
Note 2: Height adjustment can be done by using metal shims between the bottom frame and floor.

Fastening the cabinet to the floor

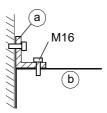
The cabinet must be fastened to the floor by using clamps along the edge of the cabinet bottom, or by bolting the cabinet to the floor through the holes inside.


Alternative 1 - Clamping

Insert the clamps into the twin slots along the front and rear edges of the cabinet frame body and fasten them to the floor with a bolt. The recommended maximum distance between the clamps is 800 mm (31.5").


If there is not enough working space behind the cabinet for mounting, fasten the top of the cabinet to the wall with L-brackets (not included in the delivery). Use the lifting bar fastening holes and bolts (M16).

Clamp

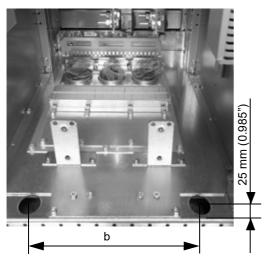


Clamp dimensions in millimeters. The dotted line denotes the cabinet frame.

Slot detail, front view (dimensions in millimeters)

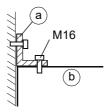
Cubicle width	Distance between slots
400 mm	250 mm (9.85")
600 mm	450 mm (17.7")
800 mm	650 mm (25.6")

Fastening the cabinet at the top with L-brackets (side view)


- a) L-bracket
- b) Cabinet roof

Alternative 2 – Using the holes inside the cabinet

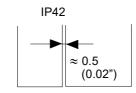
The cabinet can be fastened to the floor using the fastening holes inside the cabinet, if they are accessible. The recommended maximum distance between the fastening points is 800 mm (31.5").


If the back fastening holes are not accessible, fasten the top of the cabinet to the wall with L-brackets (not included in the delivery). Use the lifting bar fastening holes and bolts (M16).

Fastening holes inside the cabinet.

- a) Cubicle width
- b) Distance between fastening holes. Outer hole diameter 31 mm (1.22"). Bolt size: M10 or M12

a (mm)	b
400	250 mm (9.85")
600	450 mm (17.7")
800	650 mm (25.6")

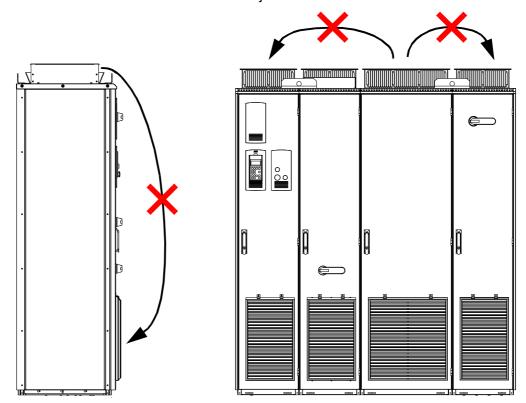


Fastening the cabinet at the top with L-brackets (side view)

- a) L-bracket
- b) Cabinet roof

Added width:

Side panels of the cabinet: 15 mm (0.6") Back panel of the cabinet: 10 mm (0.4") Gap between cubicles (mm):



Miscellaneous

Preventing the recirculation of hot air

Prevent hot air circulation outside the inverter by leading the outcoming hot air away from the area where the inlet air to the inverter is taken. Also, ensure that the hot air from the inverter module cubicle cannot enter the adjacent cubicles.

Ventilation duct at the air outlet of the cabinet

A ventilation duct can be constructed at the air outlet of the inverter cabinet. If an exhaust fan is used, ensure that the capacity is sufficient. See Losses, cooling data and noise on page 135.

Note: The ventilation system must keep the static pressure in the air outlet duct sufficiently below the pressure of the room where the inverter is located in order that the cabinet fans can produce the required air flow through the cabinet. Ensure that no dirty or moist air is able to flow backward to the inverter in any case, even during off-time or while servicing the inverter or the ventilation system.

Calculating the required static pressure difference

The required static pressure difference between the exit air duct and the inverter installation room can be calculated as follows:

$$\Delta$$
 $p_{\rm s} = (1.5...2) \cdot p_{\rm d}$

where

$$p_d = 0.5 \cdot \rho \cdot v_m^2$$

$$v_{\rm m} = q / A_{\rm c}$$

 $p_d \stackrel{\triangle}{=} dynamic pressure$

 $\rho = \text{air density (kg/m}^3)$

 $v_{\rm m} \, \stackrel{\triangle}{=} \, {\rm average \, air \, velocity \, in \, the \, exit \, duct(s) \, (m/s)}$

q = rated air flow of the inverter (m³/s)

 $A_c \, \stackrel{\triangle}{=} \, \text{cross-sectional area of the exit duct(s) (m}^2)$

Example:

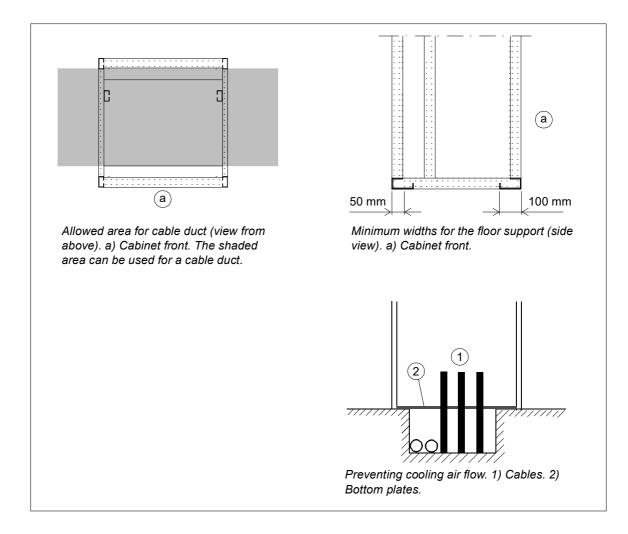
The cabinet has 3 exit openings of 315 mm diameter. The rated air flow of the cabinet is $3760 \text{ m}^3/\text{h} = 1.0 \text{ m}^3/\text{s}$.

$$A_{\rm c} = 3 \cdot 0.315^2 \cdot \pi / 4 = 0.234 \text{ m}^2$$

$$v_{\rm m}$$
 = q / $A_{\rm c}$ = 1.0 / 0.234 = 4.3 m/s

$$p_{\rm d} = 0.5 \cdot \rho \cdot v_{\rm m}^2 = 0.5 \cdot 1.1 \cdot 4.3^2 = 10 \, \text{Pa}$$

The required pressure in the exit air duct is then, $1.5...2 \cdot 10 \text{ Pa} = 15...20 \text{ Pa}$, below the pressure in the room.


More information: Contact ABB.

Cable duct in the floor below the cabinet

A cable duct can be constructed below the middle part of the cabinet. The duct width may not exceed 450 mm. The cabinet weight lies on the 100 mm wide section in front and 50 mm wide section on the back which the floor must carry.

Prevent the cooling air flow from the cable duct to the cabinet by bottom plates. To ensure the degree of protection for the cabinet, use the original bottom plates delivered with the unit. With user-defined cable entries, take care of the degree of protection, fire protection and EMC compliance.

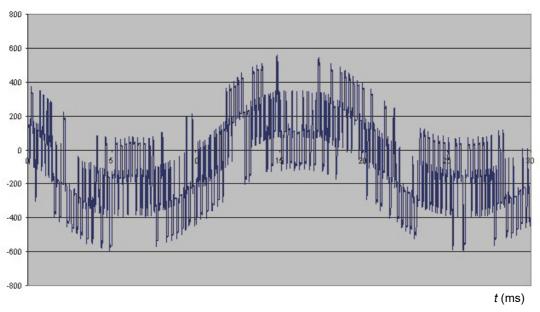
Planning the electrical installation

Contents of this chapter

This chapter contains the instructions that you must obey when selecting the cables, transformer, protections, cable routing and way of operation for the inverter system.

Limitation of liability

The installation must always be designed and made according to applicable local laws and regulations. ABB does not assume any liability whatsoever for any installation which breaches the local laws and/or other regulations. Furthermore, if the recommendations given by ABB are not followed, the inverter may experience problems that the warranty does not cover.


Selecting the transformer

Transformers designed for photovoltaic applications are available from ABB. Each inverter must be galvanically isolated from other inverters and medium and low voltage network by a dedicated transformer or winding. If you intend to connect inverters in parallel, please contact ABB for more information. ABB recommends a transformer designed for the environment where it will be installed, compliance with power transformer standard IEC 60076 and testing according to converter transformer standard for industrial applications IEC 61378-1. Country-specific requirements must always be fulfilled.

Requirements for the transformer

- suitable for the network and inverter AC voltage, current and power
- · suitable for use with IGBT inverters
- degree of protection, temperature limits and lifetime are appropriate for the environment
- equipped with a static grounded screen between the high and low voltage windings
- voltage withstand level of the low voltage winding is at least 1.6 kV against ground. A typical voltage waveform against ground is shown below.

 $U_{AC-grid}(V)$

- voltage rise time withstand level (du/dt) of the low voltage winding is at least 1000 V per microsecond against ground.
- recommended rated short-circuit impedance (X_k) for each inverter is approximately 6% (±1%)
- withstands low-voltage side current DC components of at least 0.5% of the nominal rated current preferably without using an air gap
- withstands the 3% total harmonic distortion generated by the inverter. However, we recommend dimensioning the transformer for at least 5% total harmonic distortion to withstand possible outside interference from the network.

ABB recommends that the transformer is equipped with an off-load tap changer for voltage regulation on the high-voltage side of the winding with two 2.5% step points to the plus and minus directions.

The inverter does not require any specific transformer notation. ABB recommends using traditional notations, such as Dy11d0, Dy11y11, etc.

Do not ground the neutral (star) point of the transformer or connect it to the neutral points of other windings.

Selecting the grid disconnecting device

The inverter is equipped with a hand-operated disconnecting device which isolates the inverter and the solar generator from the electrical power system. The disconnecting device does not, however, isolate the inverter AC output busbars from the power system. Therefore, during installation and maintenance work on the inverter, the AC output cables and busbars must be isolated from the electrical power system with a disconnector at the transformer.

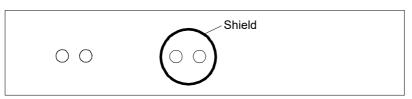
Selecting the DC input disconnecting device

As standard, the inverter is equipped with a hand-operated disconnecting device. Optionally, PVS800-57-0100kW can be equipped with miniature DC input circuit breakers (option +H377). The breakers do not, however, isolate the inverter DC input conductors and terminals from the input voltage. Therefore, the junction boxes must be equipped with breakers for the isolation.

Checking the compatibility of the solar generator and inverter

Make sure that:

- generator current and voltage match the rated values of the inverter
- generator open circuit voltage does not exceed the maximum allowed DC voltage of the inverter
- generator operating range lies between the limits of the maximum power point tracking (MPPT) function of the inverter control program
- generator grounding requirements match with the inverter.

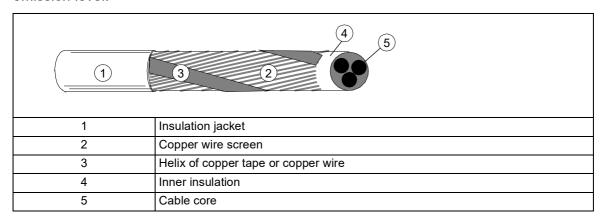

Selecting the power cables

General rules

Dimension the DC input power and AC output power cables according to local regulations:

- Dimension the cable to carry the inverter load current. See chapter Technical data for the rated currents.
- Select a cable rated for at least 70 °C (158 °F) maximum permissible temperature of conductor in continuous use.
- The inductance and impedance of the PE conductor/cable (grounding wire) must be rated according to permissible touch voltage appearing under fault conditions (so that the fault point voltage will not rise excessively when a ground fault occurs).
- Select an AC output cable rated for at least 0.6/1.0 kV AC.

A two-conductor system is allowed for the DC input cabling but a shielded cable can also be used.


Symmetrical shielded cable is recommended for the AC output cabling; see section Recommended AC output power cable types below. Compared to a four-conductor system, the use of symmetrical shielded cable reduces electromagnetic emission of the whole inverter system.

Note: When continuous metal conduit is employed, shielded cable is not required. The conduit must have bonding at both ends as with cable shield.

To operate as a protective conductor, the shield conductivity requirements according to IEC 61439-1 are shown below when the protective conductor is made of the same metal as the phase conductors:

Cross-sectional area of the phase conductors	Minimum cross-sectional area of the corresponding protective conductor
S (mm²)	S _p (mm²)
S <u><</u> 16	S
16 < S <u><</u> 35	16
35 < S	S/2

To effectively suppress radiated and conducted radio-frequency emissions, the cable shield conductivity must be at least 1/10 of the phase conductor conductivity. The requirements are easily met with a copper or aluminum shield. The minimum requirement of the cable shield is shown below. It consists of a concentric layer of copper wires with an open helix of copper tape or copper wire. The better and tighter the shield, the lower the emission level.

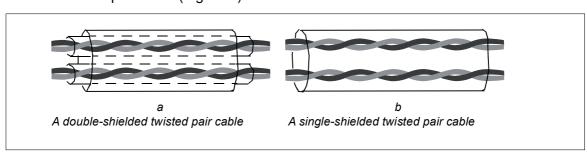
Recommended AC output power cable types

The power cable types that can be used for the inverter AC output are shown below. Make sure that the selected cable type also complies with local/state/country electrical codes.

PE	Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. The shield must meet the requirements of IEC 61439-1.
• PE	Symmetrical shielded cable with three phase conductors and a concentric PE conductor as shield. A separate PE conductor is required if the shield does not meet the requirements of IEC 61439-1.
PE	Symmetrical shielded cable with three phase conductors and symmetrically constructed PE conductor, and a shield. The PE conductor must meet the requirements of IEC 61439-1.
PE	A four-conductor system (three phase conductors and a protective conductor on a cable tray). WARNING! Ground all conductive cable supports, cable clamps and individual conductive items close to cables, such as cable trays. A dangerous voltage can become present on the non-conductive outer sheath of the cable. This can cause injury or death.

Not allowed power cable types

Symmetrical shielded cable with individual shields for each phase conductor is not allowed on any power cabling.


Selecting the control cables

General rules

All control cables must be shielded.

Use a double-shielded twisted pair cable for analog signals. Use one individually shielded pair for each signal. Do not use common return for different analog signals.

A double-shielded cable is the best alternative for low-voltage digital signals, but singleshielded twisted pair cable (Figure b) is also usable.

Signals in separate cables

Run analog and digital signals in separate, shielded cables.

Do not mix 24 V DC and 115/230 V AC signals in the same cable.

Signals allowed to be run in the same cable

Relay-controlled signals, providing their voltage does not exceed 48 V, can be run in the same cables as digital input signals. It is recommended that the relay-controlled signals be run as twisted pairs.

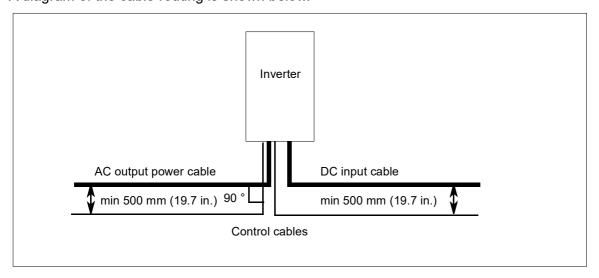
Relay cable type

The cable type with braided metallic screen (eg, ÖLFLEX by LAPPKABEL, Germany) has been tested and approved by ABB.

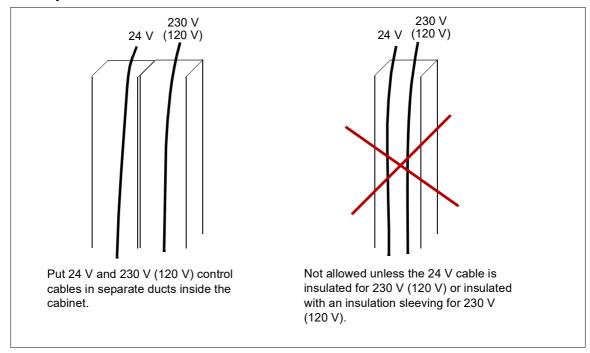
Installation sites above 2000 meters (6560 feet)

WARNING! Protect against direct contact when installing, operating and servicing the RMIO board wiring and optional modules attached to the board. The Protective Extra Low Voltage (PELV) requirements stated in EN 50178 are not fulfilled at altitudes above 2000 m (6560 ft).

Routing the cables


It is recommended that the input DC power cable, output AC power cable and control cables be installed on separate trays.

Where control cables must cross power cables ensure they are arranged at an angle as near to 90 degrees as possible. Do not run extra cables through the inverter.


The cable trays must have good electrical bonding to each other and to the grounding electrodes. Aluminum tray systems can be used to improve local equalizing of potential.

If four conductor AC cabling is used, place the three output phase cables symmetrically and close to each other. Asymmetrical installation may induce current to grounding cables and metal structures.

A diagram of the cable routing is shown below.

Separate control cable ducts

Implementing short-circuit and thermal overload protection

Protecting the inverter and AC output cable in short-circuit situations

The inverter is equipped with internal AC fuses which restrict inverter damage in case of a short-circuit inside the inverter. Install external protection (such as fuses) according to local regulations, appropriate AC line voltage and the rated current of the inverter to protect the AC output cable.

Protecting the photovoltaic generator and DC input cable in shortcircuit situations

The input DC fuses or optional DC input miniature circuit breakers (option +H377) protect the inverter DC circuit and the DC input cables in a short-circuit situation when the cable is dimensioned according to inverter nominal DC current and fuse and breaker ratings. See section *Fuses* on page 129 for the fuse and breaker ratings.

To protect inverters delivered without input DC fuses (option +0F291), follow the instructions in section Instructions for inverters delivered without input DC fuses (option +0F291) on page 82.

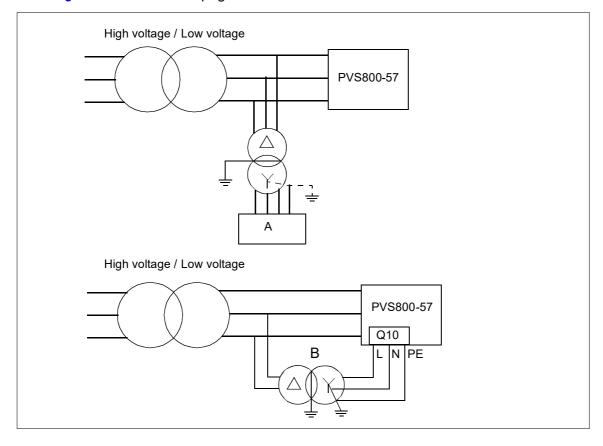
Note: The inverter does not protect the photovoltaic generator. Install adequate protection devices to, for example, each string.

Protecting the inverter and the AC output cable against thermal overload

The inverter protects itself and the AC output cable against thermal overload when the cable is dimensioned according to the nominal current of the inverter. No additional thermal protection devices are needed.

Supplying power for the auxiliary circuits

Supply the inverter with rated auxiliary voltage. Protect the supply according to local regulations with, for example, fuses and/or fault current breakers. Do not connect any additional appliances to the inverter without consulting with ABB.


Implementing the low voltage ride-through function

The user can define by parameters when the inverter must stay connected to the grid (ie, the depth and length of the grid voltage transient). The user can also define how much the inverter supports the grid with capacitive reactive current during the grid voltage transient. For more information, see *PVS800 central inverters firmware manual* (3AUA0000058422 [English]).

If a low voltage ride-through function is used with the PVS800-57-100kW-A, PVS800-57-250kW-A or PVS800-57-315kW-B inverters, the auxiliary power supply must be uninterruptible (that is, the auxiliary voltage is not allowed to have voltage dips). Use of an external UPS device (uninterruptible power supply) is recommended in that case.

Supplying circuits from the AC output of the inverter

If the AC output of the inverter is used for supplying any circuits, provide galvanic isolation as shown in the diagram below. A denotes other equipment and B supplying auxiliary circuit of the inverter. See also *Connecting the external power supply cable for the auxiliary circuit* on page 89. For instructions on selecting the transformer, see section *Selecting the transformer* on page 73.

Implementing ground fault monitoring in IT (ungrounded) systems

The internal ground fault monitoring of the inverter is based on total sum of the phase current measurements. The monitoring will detect severe ground faults in IT (ungrounded) systems. However, often the ground fault leakage current does not exceed the trip level and the inverter remains is operation. The inverter can be equipped with insulation monitoring device option +Q954, +Q976, +Q981 or +Q985, or the IT system must be monitored otherwise with a monitoring device suitable for use with inverters. Because of the leakage currents of inverters, many ground fault monitoring devices do not work properly with them.

Insulation monitoring device (options +Q954, +Q976, +Q981 and

Options +Q954, +Q976, +Q981 and +Q985 include an insulation monitoring device with a coupling device that enables measurement of the insulation resistance. According to the IEC 62109-2 standard, the measurement is needed before the inverter can be started.

The insulation monitoring device measures insulation resistance between the DC busbars and protective earth (PE). When the inverter is operating, the insulation resistance of the AC busbars against the protective earth is also measured indirectly. The monitoring device reacts to all ground faults in IT systems which are galvanically connected to each other. With option +F282 or +F283, the insulation resistance is measured only when the inverter is not operating.

If the insulation resistance between the conductors and the ground falls below the set response values, the state of the alarm relay in the insulation monitoring device is changed, and in R7i and R8i the indication LED on the cabinet door lights up. The inverter is tripped or an alarm is generated depending on the parameter settings. The measured insulation resistance value can be read from the inverter parameters in 3 × R8i frames equipped with option +Q954.

When auxiliary power to the insulation monitoring device is switched off, its alarm relays are switched to the fault position.

With option +Q954, the response values and parameters of the insulation monitoring device can be set with its function keys.

Note: The insulation monitoring device measures the insulation resistance of the solar generator correctly according to the settings when the inverter is not operating. For disabling the monitoring device during the inverter operation, contact ABB.

Safety information

The insulation monitoring device is constructed according to state-of-the-art and recognized technical safety rules. Nevertheless, when the device is used, hazards may occur to the life and limb of the user or of third parties, or there may be adverse effects on the monitoring device or on other valuable property. The monitoring device must only be used

- for the purpose for which it is intended
- when it is in perfect technical condition as far as safety is concerned.

Only one insulation monitoring device may be used in each interconnected IT system.

When insulation or voltage test is to be carried out, the device is to be isolated from the system for the test period.

The ground fault monitoring function (+Q954, +Q976, +Q981 and +Q985) is not a personnel safety or fire protection feature.

Customer wiring

The insulation monitoring device can be connected to external systems. See the circuit diagrams delivered with the inverter.

Start-up

See chapter Start-up.

More information

- · Circuit diagrams delivered with the inverter
- · Manufacturer's operating manual of the insulation monitoring device

Implementing positive or negative pole grounding (options +F282 and +F283)

Some solar module types require positive or negative grounding. Make sure that the optional positive (+F282) or negative (+F283) grounding method is suitable for the solar modules that you are using.

Ground the panels during long maintenance breaks if the panel type requires it.

Limiting the conducted disturbances with the EMC filter (option +E216) in low-voltage TN (grounded) networks

The optional EMC filter (+E216) can be installed at the network-side of the low voltage transformer to limit the conducted disturbances to other equipment connected to the network. The filter has capacitors connected to ground and is not suitable for IT (ungrounded) networks. Ensure that the network owner and operator allows the installation of this kind of a filter. The filter must always be installed according to local regulations.

Instructions for inverters delivered without input DC fuses (option +0F291)

If the standard input DC fuses are not suitable for the customer application, the inverter can be delivered without input DC fuses (option +0F291). In this case, install appropriate DC fuses to protect the inverter DC circuit and the DC input cables in a short-circuit situation. Protect the positive and negative poles of an input with separate fuses. The power loss of a fuse must not exceed 25 W.

The table in section *Fuses for inverters delivered without input DC fuses (option +0F291)* (page 132) shows the rated DC current for selecting the input DC fuses.

Mechanical installation of the input DC fuses

Use M10 or M12 bolts and nuts to connect the fuses to the busbars.

Electrical installation

Contents of this chapter

This chapter describes the electrical installation process of the inverter.

Warnings

WARNING! Obey the *Safety instructions*. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.

Measuring the insulation of the assembly

Inverter

Every inverter module is tested for insulation between the main circuit and the chassis (2700 V rms 50 Hz for 1 second) at the factory. Do not do voltage tolerance or insulation resistance tests on any part of the inverter.

AC output cable

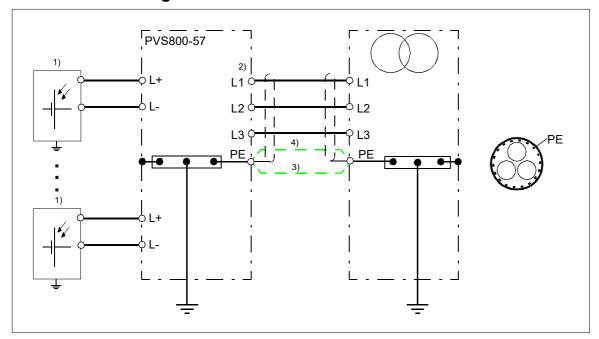
Measure the insulation of the AC output cable according to local regulations before connecting it to the inverter.

DC input cable(s)

Measure the insulation of the DC input cable(s) according to local regulations before connecting it to the inverter.

Photovoltaic generator

Make sure that the insulation of the photovoltaic generator is measured according to the manufacturer's instructions. The photovoltaic generator must be disconnected from the inverter during the insulation check.

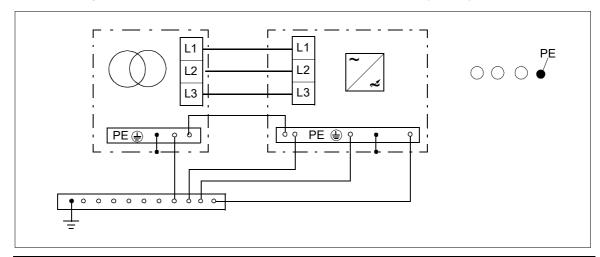

Checking the compatibility with IT (ungrounded) systems

The EMC filter (option +E216) is not suitable for use in an IT (ungrounded) system. Make sure that the low-voltage network is of the TN (grounded) type. If not, contact ABB.

warning! If the optional EMC filter +E216 is installed on an IT system (an ungrounded power system or a high resistance-grounded [over 30 ohm] power system, the system will be connected to earth potential through the EMC filter capacitors. This can cause danger or damage the equipment in the network.

Connecting the power cables

Connection diagram of a shielded cable

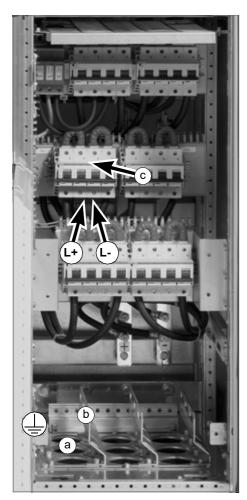

- 1) Solar array junction box
- 360 degrees grounding is recommended at the cabinet entry if shielded cable is used. Ground the other end of the input cable shield or PE conductor at the transformer.
- 3), 4) If shielded cable is used (not required but recommended) and the conductivity of the shield is < 50% of the conductivity of the phase conductor, use a separate PE cable (3) or a cable with a grounding conductor (4).

Connection diagram of a four-conductor system

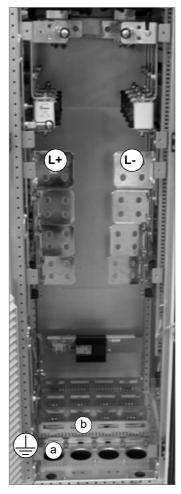
Arrange the cables as shown below to get an as equal current distribution as possible.

Connect single-core cables without concentric protective shield (armor) as shown below.

WARNING! Ground all conductive cable supports, cable clamps and individual conductive items close to cables, such as cable trays. A dangerous voltage can become present on the non-conductive outer sheath of the cable. This can cause injury or death.


DC input cable connection procedure

WARNING! Apply grease to stripped aluminum conductors before attaching them to non-coated aluminum cable lugs. Obey the grease manufacturer's instructions. Aluminum-aluminum contact can cause oxidation in the contact surfaces.

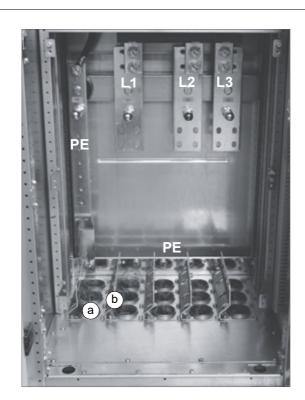

- 1. Remove the shroud covering the input power terminals.
- 2. Lead the cable(s) into the inside of the cabinet. If a shielded cable is used, connect the shield to the cabinet grounding busbar with a cable lug.
- 3. Connect the DC- conductor to terminal L- and the DC+ conductor to terminal L+.

 Note: In the R8i, 2 × R8i and 3 × R8i frame sizes with fuse-protected DC input connections, the location of the + and terminals varies depending on the number of the DC input connections. See chapter Dimension drawings.
- 4. If a separate PE conductor is used, connect it to the cabinet grounding terminal.
- 5. Refit the shroud onto the input power terminals.

DC input terminals of frame R7i with option +H377 (four miniature circuit breakers for four DC input connections)

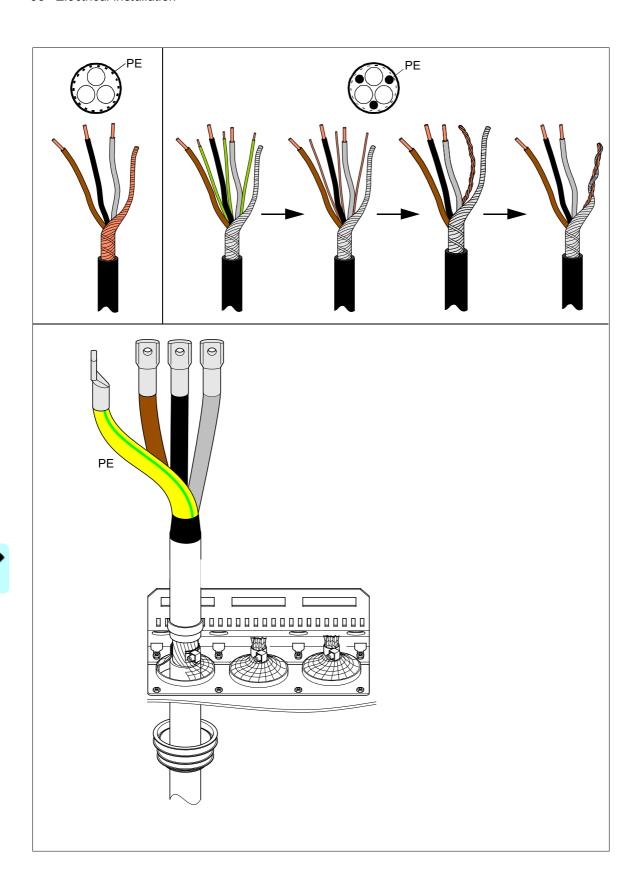
- a) Cable entries
- b) Cable support
- c) DC input miniature circuit breakers

DC input terminals of frame R8i with option +4H382 and frame 2 × R8i (four fuseprotected DC input connections)

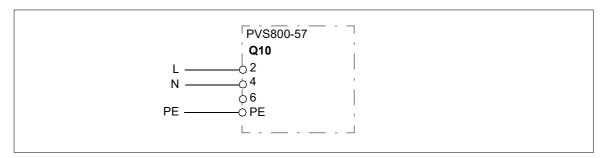

- a) Cable entries
- b) Cable support

AC output cable connection procedure

WARNING! Apply grease to stripped aluminum conductors before attaching them to non-coated aluminum cable lugs. Obey the grease manufacturer's instructions. Aluminum-aluminum contact can cause oxidation in the contact surfaces.

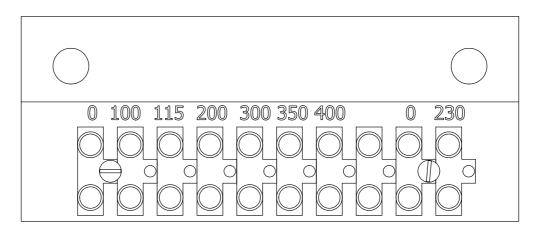

- 1. Remove the shroud covering the output power terminals.
- 2. Lead the cable(s) into the inside of the cabinet. If a shielded cable is used, prepare the cable ends and make the 360° grounding arrangements at the cabinet entry as shown on the next page. Connect the twisted shield of the AC output cable(s) to the cabinet PE (ground) busbar with a cable lug.
- 3. Connect the phase conductors to terminals L1, L2 and L3. Connect the separate PE/grounding conductor (if present) to the cabinet PE (ground) busbar.
- 4. Refit the shroud onto the output power terminals.

AC output terminals of PVS800-57-1000kW


- a) 360 degrees EMC cable entries
- b) Cable support

Connecting the external power supply cable for the auxiliary circuit

Connect the external power supply cable conductors to the terminals of auxiliary control voltage switch Q10 as shown below. For the location of the switch inside the cabinet, see the cabinet layout photos in chapter Operation principle and hardware description.

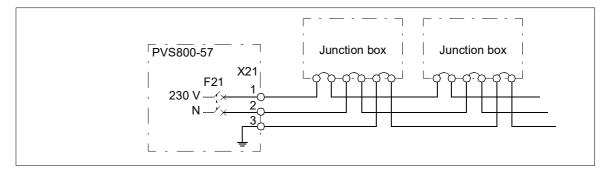


Maximum fuse: 16 A

Note concerning power supply from IT (ungrounded) systems: Contact ABB for instructions. Equip the power supply for the auxiliary circuit with fault current circuit breakers for ground fault indication and tripping. If the overvoltage protection device of the auxiliary control voltage input causes unnecessary ground fault trippings, the type of the device must be changed.

Checking the wiring of the auxiliary voltage transformer (options +G396, +G397, +G398 and +G415)

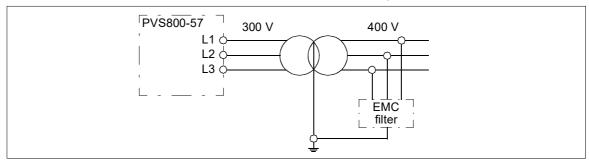
The connections of the auxiliary voltage transformer (T10) are made at the factory. Check that the connections agree with the selected option code (+G396, +G397, +G398) or the used main voltage (+G415). If not, change the connection wire to the correct voltage terminal.



Connecting the DC current measurement signals to an external controller (option +G416)

This table shows the terminals for connecting the DC current measurement signals (0...4 V) to an external controller. The terminals for connecting the grounding wires are X50:9 and X50:29. For DC input options +4H382 and +5H382, the terminal block is located in the first incoming cubicle (DCU1). For the other DC input options, the terminal block is located in the second incoming cubicle (DCU2). Lead the control cables to the applicable incoming cubicle through the bottom cable entry.

Number of DC input	DC input fuse	Current measurement output terminal	
1	F3:1	X50:11	
2	F3:2	X50:12	
3	F3:3	X50:13	
4	F3:4	X50:14	
5	F3:5	X50:15	
6	F3:6	X50:16	
7	F3:7	X50:17	
8	F3:8	X50:18	
9	F3:9	X50:19	
10	F3:10	X50:20	
11	F3:11	X50:31	
12	F3:12	X50:32	
13	F3:13	X50:33	
14	F3:14	X50:34	
15	F3:15	X50:35	
16	F3:16	X50:36	
17	F3:17	X50:37	
18	F3:18	X50:38	
19	F3:19	X50:39	
20	F3:20	X50:40	


Connecting the junction box power supply (option +G410)

The maximum allowed current that can be connected to the power supply is 6 A.

Connecting the EMC filter (option +E216)

Connect the EMC filter on the network side of the low voltage transformer.

Connecting the control cables

External control cable connections to the RMIO board terminals of the inverter are shown below. For more information, see the firmware manual.

Default I/O connection diagram (RDCU – A43)

The external control cable connections to the RMIO board for the PVS800 solar inverter master control program with default settings are shown below (program version GSXR7360 and later).

Terminal block size:

cables 0.3 ... 3.3 mm² (22 ... 12 AWG)

Tightening torque:

0.2 ... 0.4 N·m (1.8 ... 3.5 lbf·in)

- Can be configured for Start/Stop or other use with parameter settings.
- Total maximum current shared between this output and the optional modules installed on the board.
- 3) Can be configured with parameter settings for resetting the emergency stop circuit with the emergency stop reset button on the cabinet door (option +Q951 in PVS800-57-0100kW, -0250kW and -0315kW units).
- 4) Used only with options +F282 and +F283.
- 5) Transformer trip (MWS)
- 6) Can be configured with parameter 66.03 DO2.

RMIO

Y20	
Λ 20	

1		Reference voltage -10 V DC, 1 kohm $\leq R_{L}$
2	AGND	≤ 10 kohm
X21		
1	VREF+	Reference voltage 10 V DC, 1 kohm ≤ R _L ≤
2	A CNID	10 kohm

1	VREF+	Reference voltage 10 V DC, 1 kohm ≤ R _L ≤	
2	AGND	10 kohm	
3	Al1+	DC current measurement -10 10 V	
4	Al1-		
5	Al2+	Grounding current measurement.	
6	Al2-	420 mA, R_{in} = 100 ohm ⁴⁾	
7	Al3+	Solar generator DC voltage measurement.	
8	Al3-	$0(4)20 \text{ mA}, R_{in} = 100 \text{ ohm}$	
9	AO1+	By default, not in use. 0(4)20 mA, $R_L \le$ 700 ohm	
10	AO1-		
11	AO2+	By default, not in use. 0(4)20 mA, R _L ≤	
12	AO2-	700 ohm	

X22

RO1

1	DI1	Reset
2	DI2	By default, not in use. 1)
3	DI3	AC and DC overvoltage protection
4	DI4	DC cable overcurrent protection (option +G420)
5	DI5	By default, not in use ⁵⁾
6	DI6	Status of the emergency stop circuit
7	+24VD	+24 V DC max. 100 mA
8	+24VD	
9	DGND1	Digital ground
10	DGND2	Digital ground
11	DIIL	DC grounding acknowledgement ⁴⁾
X23	•	

<i>,</i>		
1		Auxiliary voltage output and input, non-
2	GND	isolated, 24 V DC 250 mA ²⁾

<25				
	RO1		Relay output 1: By default, not in	
2	RO1	- -	use. With option +Q951 reserved.	3)

X26			
1	RO2		Relay output 2: Fault indication ⁶⁾
2	RO2	-/-	1 = No fault
3	RO2		0 - Fault

X27			
1	RO3		Relay output 3: Grounding switch
2	RO3]-/,	control 4)
3	RO3		

Default I/O connection diagram (RDCU – A41)

The external control cable connections to the RMIO board for the PVS800 solar inverter control program with default settings are shown below (program version ISXR7360 and later).

Terminal block size:

cables 0.3 ... 3.3 mm² (22 ... 12 AWG)

Tightening torque:

0.2 ... 0.4 N·m (1.8 ... 3.5 lbf·in)

1) Total maximum current shared between this output and the optional modules installed on the board.

RMIO

X20
1

VREF-

		_ ·	
2	AGND	$R_{\rm L} \leq 10 \text{ kohm}$	
X21			
1	VREF+	By default, not in use. 10 V DC, 1 kohm <	
2	AGND	$R_{L} \le 10 \text{ kohm}$	
3	Al1+	Insulation resistance measurement	
4	Al1-	0 10 V (option +Q954), R _{in} = 200 kohm	
5	Al2+	AC cubicle ambient temperature measurement 420 mA ≘ -30+80 °C.	
6	Al2-		
7	AI3+	DC cubicle ambient temperature	
8	AI3-	measurement. 420 mA ≘ -30+80 °C.	
9	AO1+	Fan speed control for LCL filters. $0(4)20 \text{ mA}, R_{L} \le 700 \text{ ohm}$	
10	AO1-		
11	AO2+	By default, not in use. 0(4)20 mA, R _L ≤	
12	AO2-	700 ohm	

By default, not in use. -10 V DC, 1 kohm ≤

1/	-	-

1	DI1	Fan acknowledgement and LCL filter	
		temperature supervision	
2	DI2	Run enable. 0 = Inverter run is disabled	
		1 = Inverter run is enabled	
3	DI3	Status of the AC contactor K1.1.	
		0 = Open, 1 = Closed	
4	DI4	Ground fault supervision (options +Q954, +Q976 and +Q981)	
5	DI5	By default, not in use.	
6	DI6	Status of the 24 V auxiliary power buffer.	
		0 = Buffer is not full, 1 = Buffer is full	
7	+24VD	+24 V DC max. 100 mA	
8	+24VD		
9	DGND1	Digital ground	
10	DGND2	Digital ground	
11	DIIL	By default, not in use.	

v	2	2
л	/	ີ

1	+24V	Auxiliary voltage output and input, non-
2	GND	isolated, 24 V DC 250 mA ¹⁾
V25		

1	RO1	Relay output 1: Charging contactor
2	RO1	control
3	RO1	

X26

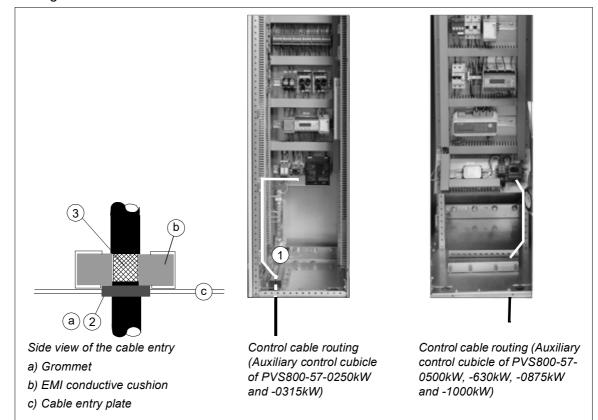
1	RO2	Relay output 2: Control of the AC
2	RO2	contactor K1.3
3	RO2	
V07		

X27

1	RO3	Relay output 3: Control of the AC
2	RO3	contactor K1 / K1.1.
3	RO3	

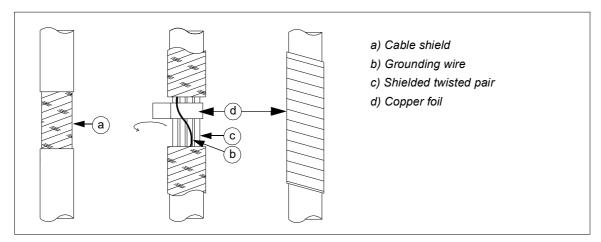
Default I/O connections (RDIO on RDCU – A41)

The default connections of the RDIO-01 digital I/O extension modules inserted on the inverter control unit are shown below.


Digital	RDIO	Description					
input/output terminal		100 kW and 250 kW units	500 kW and 630 kW units	875 kW and 1000 kW units			
RDIO-01 no. 1 c	RDIO-01 no. 1 on Slot 2 – A412						
Digital input 1	X11:DI1	Status of the DC contactor K2. 0 = Open 1 = Closed	Status of the DC contactor K2.1. 0 = Open 1 = Closed	Status of the DC contactor K2.1. 0 = Open 1 = Closed			
Digital input 2	X12:DI2	-	Status of the DC contactor K2.2. 0 = Open 1 = Closed	Status of the DC contactor K2.2. 0 = Open 1 = Closed			
Digital input 3	X12:DI3	Status of the grid monitoring relay (options +Q969, +Q974, +Q975 and Q980) 0 = Grid is not OK 1 = Grid is OK	Status of the grid monitoring relay (options +Q969, +Q974, +Q975 and Q980) 0 = Grid is not OK 1 = Grid is OK	Status of the grid monitoring relay (options +Q969, +Q974, +Q975 and Q980) 0 = Grid is not OK 1 = Grid is OK			
Relay output 1	X21:RO1	Control of the DC contactor K2.	Control of the DC contactor K2.1.	Control of the DC contactor K2.1			
Relay output 2	X22:RO2	-	Control of the DC contactor K2.2.	Control of the DC contactor K2.2			
RDIO-01 no. 2 d	on Slot 1 – A	411					
Digital input 1	X11:DI1	-	Status of the AC contactor K1.2. 0 = Open 1 = Closed	Status of the AC contactor K1.2. 0 = Open 1 = Closed			
Digital input 2	X12:DI2	-	-	Status of the AC contactor K1.3. 0 = Open 1 = Closed			
Digital input 3	X12:DI3	-	-	Status of the DC contactor K2.3. 0 = Open 1 = Closed			
Relay output 1	X21:RO1	-	Control of the AC contactor K1.2	Control of the AC contactor K1.2			
Relay output 2	X22:RO2	-	-	Control of the DC contactor K2.3			

Connection procedure

Making 360 degrees grounding at the cabinet entry for the control cables


- 1. Loosen the EMI conductive cushions.
- 2. Cut adequate holes to the rubber grommets in the cable entry plate and lead the cables through the grommets and the cushions into the cabinet.
- 3. Strip off the cable plastic sheath above the cable entry plate just enough to ensure proper connection of the bare shield and the EMI conductive cushions.
- 4. Tighten the EMI conductive cushions around the bare shield.

Note: If the outer surface of the shield is non-conductive:

- Cut the shield at the midpoint of the bare part. Be careful not to cut the conductors or the grounding wire (if present).
- Turn the shield inside out to expose its conductive surface.
- Cover the turned shield and the stripped cable with copper foil to keep the shielding continuous.

Connecting the cables to the I/O terminals

Connect the conductors to the appropriate detachable terminals of the RMIO board (see pages 92 and 93). At the terminal block, use shrink tubing or insulating tape to contain any stray strands. The shield (especially in case of multiple shields) can also be terminated with a lug and fastened with a screw at nearest grounding clamp. Leave the other end of the shield unconnected or ground it indirectly via a few nanofarads high-frequency capacitor, eg, 3.3 nF / 630 V. The shield can also be grounded directly at both ends if they are *in the same ground line* with no significant voltage drop between the end points. Tighten the screws to secure the connection.

Note: Keep any signal wire pairs twisted as close to the terminals as possible. Twisting the wire with its return wire reduces disturbances caused by inductive coupling.

Connecting a PC

For connecting a PC to the inverter during the start-up procedure, see chapter Start-up.

For normal use, connect the PC through a fiber optic link to CH3 of the RDCO module inserted in the master control unit (A43).

Installing optional modules

Mechanical installation

Optional modules such as fieldbus adapters and I/O extensions are inserted in the optional module slot on the RDCU control unit at the factory. The module is fastened with a screw. See page 52 for the available slots.

Note: Correct installation of the screw is essential for fulfilling the EMC requirements and for proper operation of the module.

Wiring the modules

See the appropriate optional module manual for specific installation and wiring instructions.

Installation checklist

Contents of this chapter

This chapter contains a list for checking the mechanical and electrical installation of the inverter.

Checklist

Go through the checklist with another person. Obey the Safety instructions.

Mal	Make sure that				
Med	Mechanical installation				
	There is sufficient free space around the unit. (See page 134.)				
	The ambient operating conditions are allowed. (See page 146.)				
	The unit is properly fastened to the floor and wall. (See Mechanical installation)				
	The cooling air is able to flow freely and cooling air volume is sufficient.				
Ele	ctrical installation				
	The capacitors are reformed if stored over one year. Refer to <i>Capacitor reforming instructions</i> (3BFE64059629 [English]).				
	The inverter is grounded properly.				
	The AC line voltage matches the nominal output voltage of the inverter.				
	The AC transformer is suitable for use with the inverter. (See section Selecting the transformer, page 73.)				

Mak	Make sure that				
	The insulation of the assembly is sufficient. (See section <i>Measuring the insulation of the assembly</i> , page 83.)				
	The AC power system is an IT (ungrounded) system.				
	The AC power cable connections at L1, L2 and L3 and their tightening torques are correct.				
	The DC power cable connections at UDC+ and UDC- and their tightening torques are correct.				
	The power cables are routed away from other cables. (See section <i>Routing the cables</i> , page 78.)				
	The auxiliary power supply cable connections at Q10 and their tightening torques are correct.				
	In units with option +G396, +G397 or +G398, the auxiliary voltage level matches the option code and wiring of the transformer.				
	The external control connections to the inverter are correct (including emergency stop, fieldbus etc.).				
	The cable connections at the junction box and their tightening torques are correct.				
	The EMC filter (option +E216) is correctly installed, if present.				
	There are no tools, foreign objects or dust from drilling inside the modules or the cabinet.				
	All shrouds and covers are in place.				

Start-up

Contents of this chapter

This chapter describes the start-up procedure of the inverter. It also gives some advice for operation.

Start-up procedure

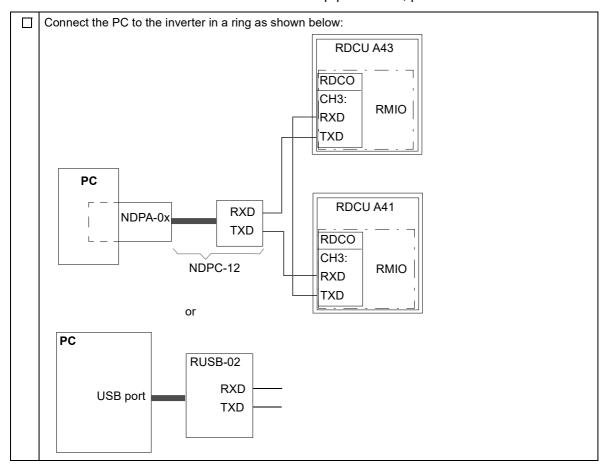
The functioning of the inverter is first tested in the local control mode with the control panel (CDP312R). Thereafter, the control program parameters are set. The start-up procedure is described step-by-step in the table below.

Saf	ety			
		WARNING! Obey the safety instructions during the installation and start-up procedure. See chapter <i>Safety instructions</i> .		
	, , ,	lified electrical professionals are allowed to install and he inverter.		
	Go away from the inverter equipment room or container to wait for the first start of the inverter. This can be done by setting start-up delay to inverter parameters.			
Pri	mary an	d ambient condition checks		
	Make sure that the mechanical and electrical installation of the inverter is completed. See chapter <i>Installation checklist</i> .			
	Make sure that the insulation resistance of the assembly is sufficient. See section <i>Measuring the insulation of the assembly</i> , page 83. Note: If the insulation resist not sufficient, the optional is resistance monitoring (optional is resistance monitoring).			

Make sure that the ambient conditions for start-up, temperature and humidity level are within the limits. See section <i>Ambient conditions</i> , page <i>146</i> .	
Note: Depending on the humidity level or temperature, it can be necessary to use cabinet heaters continuously for a longer time before start-up.	
Set switch S3 on the APBU branching unit to position ON.	
Set up the cabinet heater (option +G300):	
 Set the maximum temperature with the T65 thermostat (default 10 °C). 	
Note: Especially in very humid conditions when the inverter is installed on the site for a longer period without grid connection keep the cabinet heaters on for several days before commissioning.	
Choose the control mode by connecting the heater power supply	The optional cabinet heater has
 wire to one of the three terminals listed below: X5:3 = Heating is switched off by the T65 thermostat and when the inverter is modulating. 	three control modes (see circuit diagram sheets 64 and 65 delivered with the inverter). The control mode
 X5:4 = Heating is controlled by the K65 customer control relay 24 V DC control signal and by the T65 thermostat. 	can be selected by changing the heater power supply wire in the auxiliary control cabinet.
• X5:5 = Heating is only controlled by the T65 thermostat.	More information:
	Circuit diagrams delivered with the inverter
Make sure that there is enough light for the inverter to be able to supply power to the AC power system (grid) once it is operating.	Note: There must be enough light so that the solar generator is able to supply power to the inverter. This lets you verify that the inverter functions properly. Parameter settings can be done during the dark hours. Also, the inverter modulation can be tested without input power from the photovoltaic arrays.
Measure separately that the polarity of all DC inputs are correct. Test each junction box separately, connect and disconnect one by one. Make sure to use a minimum of 1000 V tester during this procedure.	Note: There should be a record/document stating that the polarity and voltage of each solar string is correct.
Check the DC input polarity	
Make sure that all the combiner box breakers are open.	
Verify with the voltage detector that there is no voltage at any of the DC bus input terminals.	
3. Close the breaker of the first combiner box. Verify with the voltage detector that the polarity of the DC+ and DC- terminal is correct.	
4. Make sure that the DC voltage between + and - is in the correct voltage range of the inverter. Also make sure that the voltage to ground of DC- and DC+ are in the same value range (for a 1000 V DC system it should be approximately 500 V DC). This check ensures that the impedance value to ground is similar for DC+ and DC	
5. Disconnect the breaker of the combiner box.	
Repeat the steps 3 to 5 for all the other combiner boxes separately.	

	DC voltage from the solar generator is within the allowed range of the inverter (for example, 450 1000 V DC). be estimated by using the op circuit voltage of the solar modules in string.			
	Setting up the insulation monitoring device (options +Q954, +Q976, +Q981 and +Q985)			
the inverter in the same galvanically connected IT system.		Note: Using more than one insulation monitoring device in the galvanically connected IT system will cause false results in the insulation measurement.		
	Make sure that the settings of the insulation monitoring device suit the installation and agree with the local regulations. The trip limit is adjusted to 30 kohm at the factory by default.	More information: Circuit diagrams delivered with the inverter Insulation monitoring device manufacturer's operating manual		
	Units with ABB MIRU-01 insulation monitoring (option +Q985): To enable MIRU-01 measurement, set the following parameters in the inverter control unit: • 16.18 INSUL MEAS SELECT = MIRU-01 • 30.06 RISO MIN LIMIT = 30 kOhm • 30.07 RISO FAULT ACTION = FAULT	Note: Requires ISXR/GSXR7410 or newer software.		
Set	Setting up current transducers (option +G417) for all DC inputs			
	Adjust monitoring settings for DC current measurements.	See the firmware manual.		
_	Adjusting grounding resistance for positive or negative pole grounding (options +F282 and +F283)			
	By default, the grounding resistance is set to 3 kohm. If necessary, modify the resistor configuration on the PGND-02 (A20) board as follows: • WARNING! Make sure that the voltage is disconnected and the DC main switch (Q2) is open. • Remove the shroud protecting the board. • Rewire the jumper wires on terminals X4 and X5.	-X4 -R6 -X5 2 -R7 3 3 -R8 2		
		4 -R9 1		
Par	ameter settings before first start	4 -R9 1		
Par	ameter settings before first start Make the parameter settings needed before the first start according to the firmware manual.	See the start-up section in the firmware manual.		
	Make the parameter settings needed before the first start	See the start-up section in the		
	Make the parameter settings needed before the first start according to the firmware manual.	See the start-up section in the		
Firs	Make the parameter settings needed before the first start according to the firmware manual. St start (local control mode) Measure and record the DC voltage from the solar generator. -100kW units with optional miniature circuit breakers (+H377): Open the miniature circuit breakers. Measure and record all DC	See the start-up section in the firmware manual. Note: The expected and measured DC voltages should be roughly		

Switch on the auxiliary power.	The control boards and the CDP312R control panel should "wake up". The inverter is in the stand-by mode if no faults are active. This is indicated by the STAND BY text on the control panel. For descriptions of the inverter modes, refer to the firmware manual. 1 -> 654.0 V STATE STAND BY AC POWER 0.0 kW AC CURR1 0 A Note: There may be fault and warning indications flashing on the
	display. They will be reset during the next steps.
Ensure that the control panel is controlling the master control unit (A43) by checking the node number from the display.	See the firmware manual.
<u>Units with optional emergency stop function (+Q951):</u> Release the emergency stop button and reset the emergency stop circuit.	
Units with optional positive/negative grounding (+F282/+F283): Configure the grounding option.	See the firmware manual.
Reset all faults on both control boards.	See the firmware manual.
Make sure that the DC voltage of the solar generator matches the value of 01.34 PV MODULE DC MEAS in the Master control program.	Note : If the DC voltage differs from the parameter value, do not try to start the inverter. Contact ABB.
Make sure that the inverter is in local control mode, ie, letter L is at the top row of the control panel display. If not, press the control panel key .	1 L -> 654.0 V STATE STAND BY AC POWER 0.0 kW AC CURR1 0 A


Stop the inverter by pressing the control panel key Ilike the low voltage ride-through a grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		Start the inverter by pressing the control panel key .		
After receiving the start command, the inverter goes to the SLEEP mode. 1		Description of the events in a normal starting procedure		
STATE SLEEP AC POWER 0.0 kW AC CURR1 0 h				
defined by parameter group 31 (the default delay is 10 minutes). The Description of the AC output and synchronizes to the grid The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. The DC contactor closes. The inverter goes to the MPPT mode after a delay defined by parameter group 31. It may be useful to shorten the delays during the start-up temporarily. Wake-up and sleep levels shown atch the available DC voltage.		1 L -> 598.0 V I STATE SLEEP AC POWER 0.0 kW		
In this mode the inverter charges the DC capacitors from the AC output and synchronizes to the grid The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. 1			e START ISU mode after a delay	
The DC contactor closes. The inverter goes to the MPPT mode and starts to produce active power to the AC output. 1		STATE START ISU AC POWER 0.0 kW		
When there is not enough DC voltage and/or power available, the inverter goes back to the SLEEP mode after a delay defined by parameter group 31. It may be useful to shorten the delays during the start-up temporarily. Wake-up and sleep levels show match the available DC voltage. Make sure that the inverter operates properly from the following actual value parameters in the master control program: 01.34 PV MODULE DC MEAS 01.10 AC POWER 01.07 AC CURRENT L1. The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Note: Some grid-related functions like the low voltage ride-through all grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to Ye to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		The DC contactor closes. The inverter goes to the MPPT mode a		
mode after a delay defined by parameter group 31. It may be useful to shorten the delays during the start-up temporarily. Wake-up and sleep levels shown match the available DC voltage. Make sure that the inverter operates properly from the following actual value parameters in the master control program: 01.34 PV MODULE DC MEAS 01.10 AC POWER 01.07 AC CURRENT L1. The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key Note: Some grid-related functions like the low voltage ride-through and grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		1 L -> 570.0 V I STATE MPPT AC POWER 20.0 kW		
actual value parameters in the master control program: • 01.34 PV MODULE DC MEAS • 01.10 AC POWER • 01.07 AC CURRENT L1. The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key . Note: Some grid-related functions like the low voltage ride-through arging monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		mode after a delay defined by parameter group 31. It may be useful to shorten the delays during the start-up tempora	•	
O1.34 PV MODULE DC MEAS O1.10 AC POWER O1.07 AC CURRENT L1. The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key . Stop the inverter by pressing the control panel key . Note: Some grid-related functions like the low voltage ride-through an grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to Ye to run the ID run once. See the firmware manual.			Example display:	
• 01.10 AC POWER • 01.07 AC CURRENT L1. The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key . Stop the inverter by pressing the control panel key . Note: Some grid-related functions like the low voltage ride-through argrid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to Ye to run the ID run once. See the firmware manual.				
The DC voltage should have dropped from the open circuit voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key Note: Some grid-related functions like the low voltage ride-through a grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)				
voltage and the active power should match the line current and the AC voltage. Stop the inverter by pressing the control panel key . Note: Some grid-related functions like the low voltage ride-through a grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		• 01.07 AC CURRENT L1.	AC CURR1 197 A	
Stop the inverter by pressing the control panel key Ilike the low voltage ride-through a grid monitoring will start to work or after the inverter has been started and stopped once. Set parameter 98.08 AUTO LINE ID RUN to NO. This parameter setting prevents a unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		voltage and the active power should match the line current and		
unnecessary ID run in case of auxiliary power loss of the control board. Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		Stop the inverter by pressing the control panel key (.)	Note : Some grid-related functions like the low voltage ride-through and grid monitoring will start to work only after the inverter has been started and stopped once.	
set 99.07 LINE SIDE ID RUN to YE to run the ID run once. See the firmware manual. Setting up fieldbus control (option +K454, +K458, +K466, or +K467)		Set parameter 98.08 AUTO LINE ID RUN to NO.	auxiliary power loss of the control	
Setting up fieldbus control (option +K454, +K458, +K466, or +K467)			Note: If the phase order changes, set 99.07 LINE SIDE ID RUN to YES to run the ID run once.	
□ O-446 - 6-1-16	Set		•	
according to the external controller. firmware manual (3AUA00000584)		Set the fieldbus parameters of the master control program according to the external controller.	See PVS800 central inverters firmware manual (3AUA0000058422 [English]) and the applicable fieldbus adapter module manual.	

	Make sure that the inverter can be seen from the PLC.		
	Make sure that you can read the signals from the inverter.		
	Make sure that you can start and stop the inverter.		
	☐ Test control and actual values.		
Re	Registering the inverter		
	Fill a commissioning report for registering the inverter. You can find the report on the InstalledBase web page		
	http://www180.abb.com:8010/logistics/InstalledBase/Pages/InstalledBase.aspx		
	If you do not have access to InstalledBase, submit a Membership Request on the Installed Base main page. Note that InstalledBase is only for ABB internal or ABB partner use.		
	Note: It is recommended to attach the parameter lists and back- up files of the inverter and master control program to the report		

Connecting DriveWindow

If the DriveWindow PC tool is used in the start-up procedure, proceed as follows.

	Start the DriveWindow program and connect to the inverter by choosing ABB.SMP OPC server.	Note: If all connected control units are not seen through the optical ring, check that the node address of each RMIO board is set properly. Connect optical fibers to channel CH3 in each RMIO board and change parameter 70.15 CH3 NODE ADDR accordingly.
		Note: The new node address becomes valid only after the next power-up of the RMIO board.
Ī	Open the parameter window from the DriveWindow program.	

Configuring the NETA-01 Ethernet adapter module

See NETA-01 Ethernet adapter module user's manual (3AFE64605062 [English]).

Configuring the NETA-21 remote monitoring tool

See NETA-21 remote monitoring tool user's manual (3AUA0000096939 [English]).

Fault tracing

Contents of this chapter

This chapter describes the fault tracing possibilities of the inverter.

LEDs

This table describes LEDs of the inverter.

Where	LED	When the LED is lit
RMIO board (A41)	Red	Inverter in fault state
	Green	The power supply on the board is OK.
RMIO board (A43)	Red	Inverter in fault state
	Green	The power supply on the board is OK.
Control panel	Red	Inverter in fault state
mounting platform	Green	The main + 24 V power supply for the control panel and the RMIO board is OK.
AINT board	V204 (green)	+5 V voltage of the board is OK.
	V309 (red)	Not in use.
	V310 (green)	IGBT control signal transmission to the gate driver control boards is enabled.

Warning and fault messages displayed by the CDP-312R control panel

The control panel displays the warnings and faults of the inverter control unit that it is currently controlling. Flashing messages WARNING, ID:2 or FAULT, ID:2 on the control panel display indicate a warning or fault at the other control unit. To display the warning or fault identification text, switch the control panel to view the other control unit.

See *PVS800 central inverters firmware manual* (3AUA0000058422 [English]) for the descriptions, causes and remedies of the warning and fault messages.

Fault: Same ID numbers

If the ID numbers of the two control units are set equal, the control panel stops functioning. To clear the situation:

- Disconnect the panel cable from the master control unit RMIO board (A43).
- Set the ID number of the inverter control unit RMIO board (A41) to 2. For the setting procedure, see the *PVS800 central inverters firmware manual* (3AUA0000058422 [English]).
- Connect the disconnected cable to the RMIO board of the master control unit (A43) again and set its ID number to 1.

Fault tracing of the insulation monitoring device (options +Q954, +Q976, +Q981 and +Q985)

Refer to section *Implementing ground fault monitoring in IT (ungrounded) systems*, page 81.

Maintenance

Contents of this chapter

This chapter contains preventive maintenance instructions of the inverter.

Maintenance intervals

Recommended maintenance intervals and component replacements are based on specified operational and environmental conditions. ABB recommends annual inverter inspections to ensure the highest reliability and optimum performance. More detailed maintenance information can be found in maintenance instructions, product manuals and on the internet: www.abb.com/solarinverters.

Note: Long term operation near the maximum specified ratings or environmental conditions may require shorter maintenance intervals for certain components. Check the device specific technical specifications in the relevant hardware manual and consult your local ABB Service for maintenance recommendations.

Legend

- Ι Inspection (visual inspection and maintenance action if needed)
- Ρ Performance of on/off-site work (commissioning, tests, measurements or other work)
- R Replacement

110 Maintenance

Recommended actions by the user	Annually
Connections and environment	
Environment check	
Cabinet door filters IP54	R
Spare parts	
Spare parts	
DC circuit capacitors reforming, spare modules and spare capacitors	Р
Inspections by user	
Air inlet and outlet meshes	
Inspection of dustiness, corrosion and temperature inside the cabinet. Cleaning if needed.	I

Component	Years from start-up																				
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Cooling																					
Main cooling fan of inverter unit						R						R						R			
Cooling fan of LCL-filter unit						R						R						R			
Cabinet cooling fan (roof)						R						R						R			
Cabinet cooling fan (door)						R						R						R			
Inverter unit																					
DC circuit electrolytic capacitors and																				R	
discharging resistors 1)																					
Main circuit interface board ¹⁾												R									
Flat ribbon cables												R									
Control													•								
Memory backup-battery in the Data Logger unit (APBU)						R						R						R			
24 V DC buffer ²⁾									R			R						R			
Power supplies												R									
Connections and environment																					
Cabinet door filters	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R
Checking of power connections of			ı			Ι			ı			Ι			Ι			ı			I
inverter module. Cleaning if needed. 3)																					
Tightness and cleanliness of main circuit terminals			I			Ι			I			I			Ι			I			Ι
Heat sink cleaning ³⁾			I			I			I			Ι			I			I			Ι

3AXD10000613891

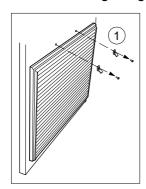
- 1) Estimated maintenance interval in ideal conditions: ambient temperature between 0 \dots 40° C (104 °F), indoor conditioned (IEC 62109), and no cyclic heavy load.
- 2) If operation temperature is continuously below 40° C (104 °F), replacement after 12 years from the start-up. If operation temperature is continuously above 40° C (104 °F), replacement after 9 years and after 18 years from the start-up. Contact ABB for replacement.
- 3) Always when inverter module is replaced, check the cleanliness and condition of power connections and heat sink.

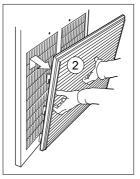
Note: The schedule is based on the solar power production operations. Using the reactive power compensation option decreases the maintenance intervals.

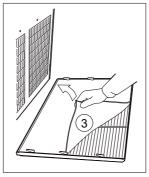
Cleaning the interior of the cabinet

WARNING! Obey the *Safety instructions*. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.

WARNING! Use a vacuum cleaner with an antistatic hose and nozzle. Using a normal vacuum cleaner creates static discharges which can damage circuit boards.


- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page 14 before you start the work.
- 2. When necessary, clean the interior of the cabinet with a soft brush and a vacuum cleaner.
- 3. Clean the air inlets and outlets of the fans.
- 4. Check the air inlet filters of the cabinet. Replace when necessary; see section Replacing the air filters below.


Replacing the air filters


Check the air filters and replace if necessary (see section Losses, cooling data and noise on page 135 for the correct filter types).


Inlet (door) filters

- 1. Remove the fasteners at the top of the grating.
- 2. Lift the grating and pull it away from the door.
- 3. Replace the air filter mat.
- 4. Install the grating in reverse order.

Cleaning the heatsink

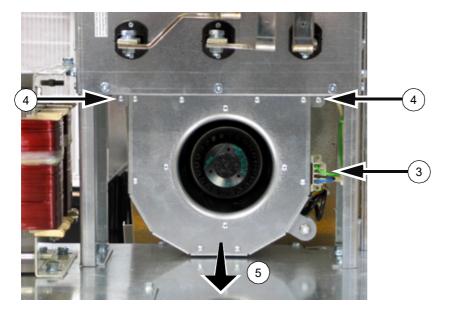
The inverter module heatsink fins pick up dust from the cooling air. Check the cleanliness of the heatsink regularly. The inverter runs into overtemperature warnings and faults if the heatsink is not clean. When necessary, clean the heatsink as follows.

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the inverter cubicle door.
- 3. Remove the inverter module from the cabinet as described in section *Replacing the inverter module (frames R8i, 2 × R8i, 3 × R8i)*.
- 4. Remove the module cooling fan as described in section *Fans* below.
- 5. Blow clean, dry compressed air (not humid) from bottom to top and simultaneously use a vacuum cleaner at the air outlet to trap the dust. Prevent the dust from entering adjoining equipment.
- 6. Refit the cooling fan.

Checking and cleaning the power connections (R8i, 2 × R8i, 3 × R8i)

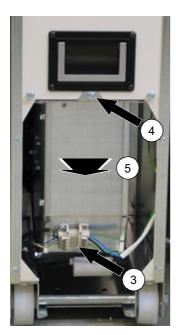
- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the inverter cubicle door.
- 3. Remove one inverter module from the cabinet as described in section *Replacing the inverter module (frames R8i, 2 × R8i, 3 × R8i)*.
- 4. Check the tightness of the busbar connections at the quick connector. Use the tightening torque tables in chapter *Technical data*.
- 5. Clean all contact surfaces of the quick connector and apply a layer of suitable joint compound (eg, Isoflex[®] Topas NB 52 from Klüber Lubrication) onto them.
- 6. Install the inverter module.
- 7. Repeat steps 4 to 7 for all remaining inverter modules.

Fans

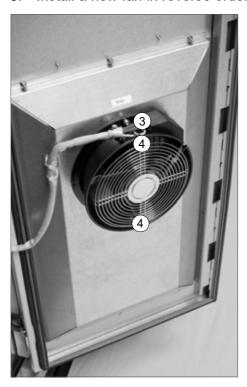

The cooling fan lifespan depends on the inverter usage and ambient temperature. See the firmware manual for an actual signal which indicates the hours of usage of the fan.

Fan failure can be predicted by the increasing noise from fan bearings and the gradual rise in the heatsink temperature in spite of heatsink cleaning. If the inverter is operated in a critical part of a process, fan replacement is recommended once these symptoms start appearing. Replacement fans are available from ABB. Do not use other than ABB-specified spare parts.

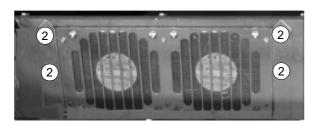
Replacing the LCL filter cooling fan (R7i)

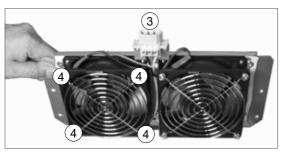

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the LCL filter cubicle door.
- 3. Disconnect the wire plug.
- 4. Remove the two screws holding the fan unit.
- 5. Pull the fan unit out.
- 6. Install new fan in reverse order.

Replacing the LCL filter cooling fan (R8i, 2 × R8i, 3 × R8i)


- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the LCL filter cubicle door.
- 3. Disconnect the fan wiring plug.
- 4. Remove the screw of the fan fastening clip.
- 5. Pull the fan out.
- 6. Install a new fan in reverse order.

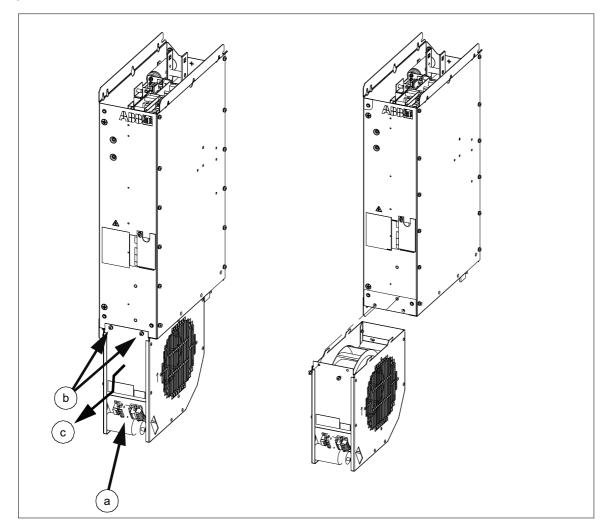
Replacing the door fans


- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the cubicle door.
- 3. Disconnect the fan supply wires.
- 4. Remove the fan fastening screws.
- 5. Install a new fan in reverse order.

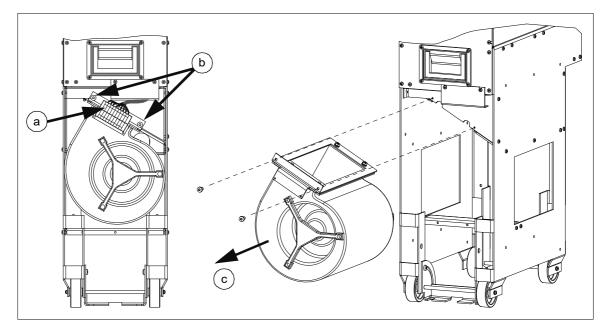


Replacing the cabinet roof fans (R8i)

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Remove the four fastening screws of the fan assembly plate.
- 3. Disconnect the fan wiring plug.
- 4. Remove the fan fastening screws.
- 5. Disconnect power supply and PE wires.
- 6. Install a new fan in reverse order.



Replacing the cooling fan of the inverter module (R7i)

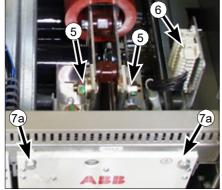

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the inverter cubicle door.
- 3. Disconnect the wire plug (a).
- 4. Remove the two screws holding the fan unit (b).
- 5. To free the fan, pull it slightly outwards, then downwards (c).
- 6. Install new fan in reverse order.

Replacing the cooling fan of the inverter module (R8i, 2 × R8i, 3 × R8i)

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the inverter cubicle door.
- 3. Disconnect the fan wiring plug (a).
- 4. Remove the locking screws (b).
- 5. Pull the fan out along its sliding rails (c).
- 6. Install new fan in reverse order.

Replacing the inverter module (frames R8i, 2 × R8i, 3 × R8i)

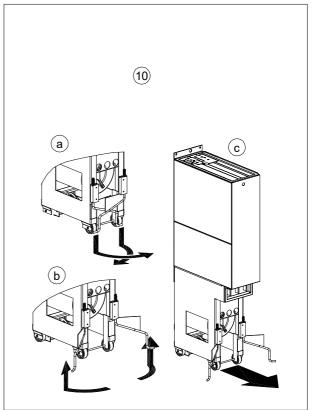
WARNING! Obey the *Safety instructions*. If you ignore them, injury or death, or damage to the equipment can occur. If you are not a qualified electrical professional, do not do installation or maintenance work.




WARNING! Be careful when you move, remove or install the inverter module. See section *General safety* on page *16* for instructions on how to handle the inverter module.

Removing the module from the cubicle

- 1. Stop the inverter and do the steps in section *Electrical safety precautions* on page *14* before you start the work.
- 2. Open the cubicle door.
- 3. Remove any shrouds that protect the busbars and cable entries.
- 4. Open the transparent cover on the front of the inverter module (the rightmost module) and disconnect the fiber optic cables. Move the cables aside.
- 5. Remove the L-shaped DC busbars on top of the module.
- 6. Disconnect the terminal block (X50) next to the DC busbars.
- 7. Remove the two module fastening screws (7a) at the top. At the base of the module, loosen the two fastening bolts (7b) but keep them in place. Lift the bracket (7c) and fasten it into the up position carefully.
- 8. Insert the module pull-out ramp under the two bolts at the base of the module and tighten the bolts carefully.



9. Pull the module carefully out of the cubicle along the ramp. Make sure that the wires do not catch. While pulling on the handle, keep a constant pressure with one foot on

the base of the module to prevent the module from tipping over. Use safety shoes with metal toe cap to avoid foot injury.

10. Extend the support legs of the module. Keep the legs extended until the module is about to be inserted back into the cubicle.

Installing the module into the cubicle

- 1. Move the new inverter module close to the ramp, then retract the support legs of the module.
- 2. Push the module up the ramp back into the cubicle. Keep your fingers away from the edge of the module front plate to avoid pinching them between the module and the cubicle. Also, keep a constant pressure with one foot on the base of the module to stabilize the movement.
- 3. Tighten the module fastening screws at the top.
- 4. Connect the DC busbars. The tightening torque is 70 N·m (51.6 lbf·ft) for M12 screws.
- 5. Connect the cables (X50, fiber optic cables).
- 6. Loosen the module fastening bolts at the base of the module and remove the pull-out ramp. Flip the module fastening bracket into the down position and tighten the screws.
- 7. Close the cubicle door.

Replacing the LCL filter

Contact ABB.


Capacitors

The inverter has several electrolytic capacitors. Their lifespan depends on the inverter loading and ambient temperature. Capacitor life can be extended by decreasing the ambient temperature. Capacitor life shortens in high ambient temperatures and under heavy loading.

It is not possible to predict a capacitor failure. Capacitor failure is usually followed by a mains fuse failure or a fault trip. Contact ABB if capacitor failure is suspected. Replacements are available from ABB. Do not use other than ABB-specified spare parts.

Reforming the capacitors

Reform (re-age) spare part capacitors once a year according to Capacitor reforming instructions (3BFE64059629 [English]).

Technical data

Contents of this chapter

This chapter contains the technical data for the inverters.

Ratings

The inverter ratings are given below.

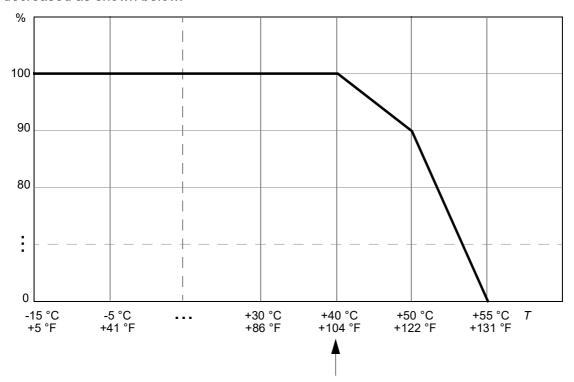
Inverter type	Frame	Temp		Nominal ratings							
PVS800-57-	size		1	1	11	D	D	/ D\/	Backfeed	Inr	ush
			N(AC)	/max(DC)	$U_{N(AC)}$	$P_{N(AC)}$	P_{pv}	I _{sc} PV	current *	cur	rent
			Α	Α	V	kW	kWp	Α	Α	Α	ms
0100kW-A	R7i	40 °C	195	245	300	100	120	414	150	400	200
0250kW-A	R8i	40 °C	485	600	300	250	300	1035	270	400	200
0315kW-B	R8i	45 °C	520	615	350	315	380	1107	270	400	200
0500kW-A	2×R8i	50 °C	965	1145	300	500	600	2061	550	800	200
0630kW-B	2×R8i	45 °C	1040	1230	350	630	760	2214	550	800	200
0875kW-B	3×R8i	50 °C	1445	1710	350	875	1050	3078	440	800	200
1000kW-C	3×R8i	50 °C	1445	1710	400	1000	1200	3078	440	800	200

^{*} The values depend on the fuse ratings.

3AXD00000592517

I _{N(AC)}	Continuous AC output current.
$P_{N(AC)}$	Continuous AC output power.
I _{max(DC)}	Maximum input current at nominal output power and ambient temperature
$U_{N(AC)}$	Nominal output voltage
P_{pv}	Recommended maximum input power to ensure full output power at normal radiation conditions. Inverter limits the power to a safe level.
kW_p	kW peak
/ _{sc} PV	Absolute maximum total photovoltaic array short-circuit current (DC)
Temp	Nominal ambient temperature. The values apply to this temperature.

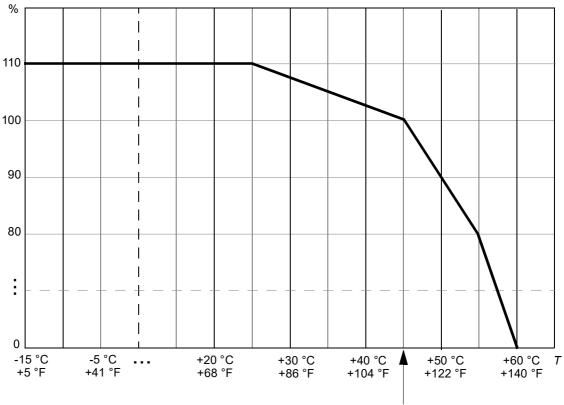
Altitude derating


The inverter load capacity (current and power) decreases if the installation site altitude is more than 1000 m (3280 ft). The derating is 1% for every 100 m (328 ft). For the maximum installation site altitude, see section *Ambient conditions* on page 146.

Temperature rating curves

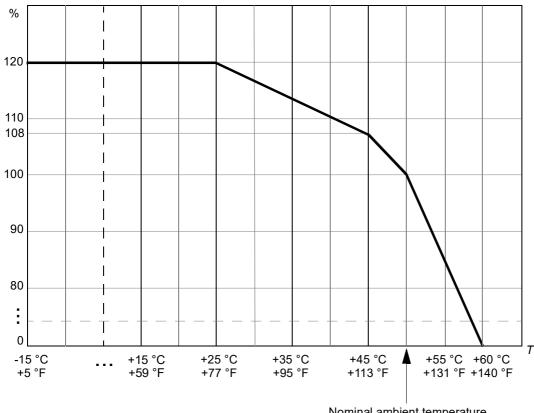
The load capacity (current and power) decreases if the ambient temperature is higher than the nominal ambient temperature.

Temperature rating of types -0100kW-A and -0250kW-A


In the temperature range 40 \dots 50 °C (104 \dots 122 °F), the rated output current is decreased as shown below.

Nominal ambient temperature

Temperature rating of types -0315kW-B and -0630kW-B


This curve shows the load capacity of inverter types -0315kW-B and -0630kW-B as a function of ambient temperature. The curve is applicable at altitudes below 1000 m (3280 ft).

Nominal ambient temperature

Temperature rating of types-0500kW-A, -0875kW-B and -1000kW-C

This curve shows the load capacity of inverter types -0500kW-A, -0875kW-B and -1000kW-C as a function of ambient temperature. The curve is applicable at altitudes below 1000 m (3280 ft).

Nominal ambient temperature

With temperature compensated altitude derating

Each degree of maximum ambient temperature below the nominal ambient temperature gives a compensation to the altitude derating, but the temperature derating curve and maximum allowed altitude must not be exceeded. When calculating the compensated altitude derating factor, you must observe the corner points of the temperature rating curves.

Example1: For inverter types PVS800-57-0100kW-A and PVS800-57-0250kW-A installed at 1800 m (5900 ft), if the maximum ambient temperature is limited to +35 °C (95 °F), the compensated altitude derating factor is $100\% - 8 \cdot 1\% + (40 - 35) \cdot 1\% = 97\%$ or 0.97.

Example 2: For inverter types PVS800-57-0315kW-B, PVS800-57-0630kW-B installed at 2100 m (6890 ft), if the maximum ambient temperature is limited to +35 °C (95 °F), the compensated altitude derating factor is $100\% - 11 \cdot 1\% + (45 - 35) \cdot 0.5\% = 94\%$ or 0.94.

Example 3: For inverter types PVS800-57-0500kW-A, PVS800-57-0875kW-B and PVS800-57-1000kW-C installed at 2800 m (9200 ft), if the maximum ambient temperature is limited to +32 °C (89 °F), the compensated altitude derating factor is 100% - $18 \cdot 1\% + (50 - 45) \cdot 1.6\% + (45 - 32) \cdot 0.6\% = 97.8\%$ or 0.978.

Type equivalence table

Inverter type	Frame size	Inverter module(s) used	LCL filter(s) used
PVS800-57-0100kW-A	R7i	PVS800-104-0105kW-A	SLCL-05
PVS800-57-0250kW-A	R8i	PVS800-104-0250kW-A	SLCL-16
PVS800-57-0315kW-B	R8i	PVS800-104-0315kW-B	SLCL-16
PVS800-57-0500kW-A	2×R8i	2×PVS800-104-0250kW-A	2×SLCL-16
PVS800-57-0630kW-B	2×R8i	2×PVS800-104-0315kW-B	2×SLCL-16
PVS800-57-0875kW-B	3×R8i	3×PVS800-104-0315kW-B	3xSLCL-17
PVS800-57-1000kW-C	3×R8i	3×PVS800-104-0315kW-B	3xSLCL-17

Fuses

Data for the factory-installed fuses are given in the tables below. Fuses from other manufacturers can be used if they meet the given ratings.

Main circuit AC fuses

Inverter type		Fuse information								
	Qty	Rated current (A)	Bussmann	Mersen						
PVS800-57-0100kW-A	3	400	170M5808D	-						
PVS800-57-0250kW-A	3	1000	170M6814D	6,9URD3PV1000						
PVS800-57-0315kW-B	3	1000	170M6814D	6,9URD3PV1000						
PVS800-57-0500kW-A	6	1000	170M6414	6,9URD33TTF1000						
PVS800-57-0630kW-B	6	1000	170M6414	6,9URD33TTF1000						
PVS875-57-0875kW-B	9	1000	170M6414	6,9URD33TTF1000						
PVS800-57-1000kW-C	9	1000	170M6414	6,9URD33TTF1000						

Inverter DC fuses

Inverter type		Fuse information							
	Qty	Rated current (A)	Bussmann	Mersen					
PVS800-57-0100kW-A	2	400	170M6303	-					
PVS800-57-0250kW-A	2	800	170M5398	11URD73PA0800					
PVS800-57-0315kW-B	2	800	170M5398	11URD73PA0800					
PVS800-57-0500kW-A	4	800	170M5398	11URD73PA0800					
PVS800-57-0630kW-B	4	800	170M5398	11URD73PA0800					
PVS800-57-0875kW-B	6	800	170M5398	11URD73PA0800					
PVS800-57-1000kW-C	6	800	170M5398	11URD73PA0800					

■ DC fuses for 2 DC input connections (option +2H382)

Inverter type	Fuse information					
	Qty	Rated current (A)	Bussmann			
PVS800-57-0250kW-A	4	400	PV-400AF3			
PVS800-57-0315kW-B	4	400	PV-400AF3			

■ DC fuses for 4 DC input connections (option +4H382)

Inverter type		information	
	Qty	Rated current (A)	Bussmann
PVS800-57-0250kW-A	8	250	PV-250AF2
PVS800-57-0315kW-B	8	315	PV-315AF3
PVS800-57-0500kW-A	8	400	PV-400AF3
PVS800-57-0630kW-B	8	400	PV-400AF3

■ DC fuses for 5 DC input connections (option +5H382)

Inverter type		Fuse information					
	Qty	Qty Rated current Bussmann (A)					
PVS800-57-0500kW-A	10	400	PV-400AF3				
PVS800-57-0630kW-B	10	400	PV-400AF3				

■ DC fuses for 8 DC input connections (option +8H382)

Inverter type	Fuse information								
	Qty	Rated current (A)	Bussmann						
PVS800-57-0250kW-A	16	160	PV-160AF2						
PVS800-57-0315kW-B	16	160	PV-160AF2						
PVS800-57-0500kW-A	16	250	PV-250AF2						
PVS800-57-0630kW-B	16	250	PV-250AF2						
PVS800-57-0875kW-B	16	400	PV-400AF3						
PVS800-57-1000kW-C	16	400	PV-400AF3						

DC fuses for 10 DC input connections (option +10H382)

Inverter type		Fuse information							
	Qty	Rated current (A)	Bussmann						
PVS800-57-0500kW-A	20	200	PV-200AF2						
PVS800-57-0630kW-B	20	200	PV-200AF2						
PVS800-57-0875kW-B	20	315	PV-315AF3						
PVS800-57-1000kW-C	20	315	PV-315AF3						

DC fuses for 12 DC input connections (option +12H382)

Inverter type	Fuse information						
	Qty	Rated current (A)	Bussmann				
PVS800-57-0500kW-A	24	200	PV-200AF2				
PVS800-57-0630kW-B	24	200	PV-200AF2				
PVS800-57-0875kW-B	24	250	PV-250AF2				
PVS800-57-1000kW-C	24	250	PV-250AF2				

DC fuses for 15 DC input connections (option +15H382)

Inverter type	Fuse information							
	Qty	Rated current (A)	Bussmann					
PVS800-57-0500kW-A	30	160	PV-160AF2					
PVS800-57-0630kW-B	30	160	PV-160AF2					
PVS800-57-0875kW-B	30	200	PV-200AF2					
PVS800-57-1000kW-C	30	200	PV-200AF2					

DC fuses for 16 DC input connections (option +16H382)

Inverter type	Fuse information					
	Qty	Rated current (A)	Bussmann			
PVS800-57-0875kW-B	32	200	PV-200AF2			
PVS800-57-1000kW-C	32	200	PV-200AF2			

DC fuses for 20 DC input connections (option +20H382)

Inverter type	Fuse information						
	Qty	Rated current (A)	Bussmann				
PVS800-57-0875kW-B	40	160	PV-160AF2				
PVS800-57-1000kW-C	40	160	PV-160AF2				

Fuses for inverters delivered without input DC fuses (option +0F291)

The table below shows the rated DC current for selecting the input DC fuses (see the next table) as per the number of the DC input connections to the solar generator.

No. of DC input	Rated current for the input DC fuses (A)										
connections	-0250kW-A	-0315kW-B	-0500kW-A	-0630kW-B	-0875kW-A	-1000kW-A					
2	400 A	400 A	-	-	-	-					
3	315 A	355 A	-	-	-	-					
4	250 A	250 A	400 A	400 A	-	-					
5	200 A	200 A	400 A	400 A	-	-					
6	160 A	200 A	355 A	355 A	-	-					
7	160 A	160 A	315 A	315 A	-	-					
8	160 A	160 A	250 A	250 A	400 A	400 A					
9	-	-	250 A	250 A	355 A	355 A					
10	-	-	200 A	200 A	315 A	315 A					
11	-	-	200 A	200 A	315 A	315 A					
12	-	-	200 A	200 A	250 A	250 A					
13	-	-	160 A	160 A	250 A	250 A					
14	-	-	160 A	160 A	250 A	250 A					
15	-	-	160 A	160 A	200 A	200 A					
16	-	-	-	-	200 A	200 A					
17	-	-	-	-	200 A	200 A					
18	-	-	-	-	200 A	200 A					
19	-	-	-	-	160 A	160 A					
20	-	-	-	-	160 A	160 A					

The table below shows the recommended input DC fuse types. For other fuses, contact ABB.

Rated DC fuse current of the inverter (A)	Recommended input DC fuses
400 A	PV-400AF3
355 A	PV-355AF3
315 A	PV-315AF3
250 A	PV-250AF2
200 A	PV-200AF2
160 A	PV-160AF2

Miniature DC circuit breakers (option +H377)

Inverter type	Breaker information				
	Qty	ABB			
PVS800-57-0100kW-A	4	S804PV-S80			

Miniature circuit breakers for options +G300 and +G410

Option	Breaker
+G300	S 202-K6
+G410	DS201-C6A30

Dimensions, weights and free space requirements

The heights and depths of the cabinet are given below.

Inverter type	Heigh	nt	De	oth	
PVS800-57	mm	in.	mm	in.	
0100kW-A	2130	83.84	690	27.17	
0250kW-A	2130	83.84	680	26.77	
0315kW-B	2130	83.84	680	26.77	
0500kW-A	2130	83.84	708	27.87	
0630kW-B	2130	83.84	708	27.87	
0875kW-B	2130	83.84	708	27.87	
1000kW-C	2130	83.84	708	27.87	

The widths of the cabinet are given below.

Inverter type	Width (mm)										
PVS800-57	+H377	+H382	+2H382	+4H382	+5H382	+8H382	+10H382	+12H382	+15H382	+16H382	+20H382
0100kW-A	1030	1030	-	-	-	-	-	-	-	-	-
0250kW-A	-	-	1830	1830	-	2230	-	-	-	-	-
0315kW-B	-	-	1830	1830	-	2230	-	-	-	-	-
0500kW-A	-	-	-	2630	2630	3030	3030	3430	3430	-	-
0630kW-B	-	-	-	2630	2630	3030	3030	3430	3430	-	-
0875kW-B	-	-	-	-	-	3630	3630	4030	4030	4430	4430
1000kW-C	-	-	-	-	-	3630	3630	4030	4030	4430	4430

The weights of the cabinet are given below.

Inverter type		Weight (kg)										
PVS800-57	+H377	+H382	+2H382	+4H382	+5H382	+8H382	+10H382	+12H382	+15H382	+16H382	+20H382	
0100kW-A	700	600	-	-	-	-	-	-	-	-	-	
0250kW-A	-	-	1100	1200	-	1320	-	-	-	-	-	
0315kW-B	-	-	1100	1200	-	1320	-	-	-	-	-	
0500kW-A	-	-	-	1640	1650	1760	1770	1880	1890	-	-	
0630kW-B	-	-	-	1640	1650	1760	1770	1880	1890	-	-	
0875kW-B	-	-	-	-	-	2320	2330	2440	2450	2560	2570	
1000kW-C	-	-	-	-	-	2320	2330	2440	2450	2560	2570	

The free space requirements are given below.

Front		Side		Ab	Above		Back	
mm	in.	mm	in. mm in. m	in.	in.	mm in. mm	mm	
150	5.91	-	-	500	19.68	-	-	
≥ 500 mn (19.68 in.			П					

Losses, cooling data and noise

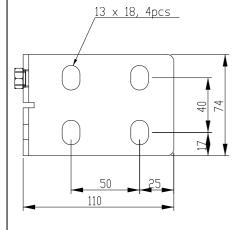
The inverter is cooled by an internal fan, flow direction from front to top.

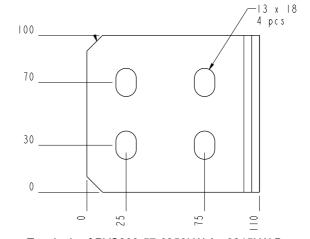
Inverter type	Heat dissipation 1)		Noise			
		Inverter module cubicles		Total air flow ²⁾		
	kW	m ³ /h	ft ³ /h	m ³ /h	ft ³ /h	dB
PVS800-57-0100kW-A	4	-	-	1300	46000	75
PVS800-57-0250kW-A	10	2500	88300	3250	115000	75 ³⁾
PVS800-57-0315kW-B	10	2500	88300	3250	115000	75 ³⁾
PVS800-57-0500kW-A	20	5000	177000	6000	212000	75 ³⁾
PVS800-57-0630kW-B	20	5000	177000	6000	212000	75 ³⁾
PVS800-57-0875kW-B	30	7950	281000	9450	333700	75
PVS800-57-1000kW-C	30	7950	281000	9450	333700	75

¹⁾ for dimensioning the ventilation of the electric equipment room

Terminal and cable entry data for the DC input power cable

The DC busbars are tin-plated. Cable lugs suited to tin-plated materials can be used.


Inverter type		2.36")				
	+H377	+H382	+2/4/5H382	+8/10H382	+12/15H382	+16/20H382
PVS800-57-0100kW-A	3 × 3	1 × 3	-	-	-	-
PVS800-57-0250kW-A	-	-	4 × 4	8 × 4	-	-
PVS800-57-0315kW-B	-	-	4 × 4	8 × 4	-	-
PVS800-57-0500kW-A	-	-	4 × 4	8 × 4	12 × 4	-
PVS800-57-0630kW-B	-	-	4 × 4	8 × 4	12 × 4	-
PVS800-57-0875kW-B	-	-	-	8 × 4	12 × 4	16 × 4
PVS800-57-1000kW-C	-	-	-	8 × 4	12 × 4	16 × 4


²⁾ cooling air flow for a cabinet with the minimum number of DC input cubicles

³⁾ at partial power typically < 65 dB with speed-controlled fans

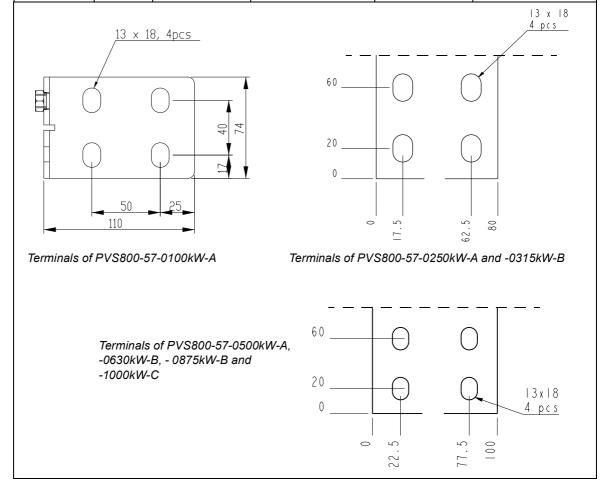
The DC input power cable terminal data is given in the table below.

	Units with fuse-protected DC input connections													
					D	C bu	sbar	5					PE busbar	
Inverter				Pcs	(plus	+ mi	inus))						
PVS800-57-	+H382	+2H382	+4H382	+5H382	+8H382	+10H382	+12H382	+15H382	+16H382	+20H382	Bolt size	Tightening torque	Bolt size	Tightening torque
0100kW-A	2	-	-	-	-	-	-	-	-	-				
0250kW-A	-	4	8	-	16	-	-	-	-	-				
0315kW-B	-	4	8	-	16	-	-	-	-	-		70 N	M10	00 44 N
0500kW-A	-	-	8	10	16	20	24	30	-	-	M12 or ½"	70 N·m (51.6 lbf·ft)	or	3044 N·m (2232 lbf·ft)
0630kW-B	-	-	8	10	16	20	24	30	-	-	J. 72	(0 1.0 .01 .1)	3/8"	(==::::0= ::::)
0875kW-B	-	-	-	-	16	20	24	30	32	40				
1000kW-C	-	-	-	-	16	20	24	30	32	40				

Terminals of PVS800-57-0100kW-A

Terminals of PVS800-57-0250kW-A, -0315kW-B, -0500kW-A, -0630kW-B,- 0875kW-B and -1000kW-C

Units with MCB-protected DC input connections (option +H377)


Inverter	nverter Photovoltaic switches				
type PVS800-57-	Pcs	Wire size	Tightening torque	Bolt size	Tightening torque
0100kW-A	4	6 50 mm ² (stranded cable) 6 70 mm ² (solid cable)	3 4 N·m (2.2 3.0 lbf·ft)	M10 (3/8")	3044 N·m (2232 lbf·ft)

Terminal and cable entry data for the AC output power cable

The AC busbars are tin-plated. Cable lugs suited to tin-plated materials can be used.

Inverter type	No. of cable entries Ø60 mm (2.36")
PVS800-57-0100kW-A	3
PVS800-57-0250kW-A	2 × 3
PVS800-57-0315kW-B	2 × 3
PVS800-57-0500kW-A	3 × 4
PVS800-57-0630kW-B	3 × 4
PVS800-57-0875kW-B	3 × 4
PVS800-57-1000kW-C	3 × 4

Inverter type		AC bus	bars	PE busbar			
PVS800-57-	Pcs	Bolt size	Tightening torque	Screw	Tightening torque		
0100kW-A	3						
0250kW-A	3						
0315kW-B	3						
0500kW-A	3	M12 or ½"	70 N·m (51.6 lbf·ft)	M10 (3/8")	30 44 N·m 22 32 lbf·ft)		
0630kW-B	3	01 72	(31.0 lb1 lt)	(3/0)	22 32 101 11)		
0875kW-B	6						
1000kW-C	6						

AC output connection specification

Voltage Types -0100kW-A, -0250kW-A and -0500kW-A: 300 V AC 3-phase ± 10%

Types -0315kW-B, -0630kW-B and -0875kW-B: 350 V AC 3-phase ± 10%

Type -1000kW-C: 400 V AC 3-phase ± 10%

Allowed electrical system

type

Transformer

3-phase IT (ungrounded) system. Galvanic isolation for each inverter is

The transformer must be suitable for IGBT-based inverter use with high du/dt values against ground. A dedicated low-voltage winding is necessary for each inverter. Static screen between windings with proper dimensioning is

For details on selecting the transformer, see Selecting the transformer on page 73.

Short-circuit withstand strength (IEC 60439-1)

Type -0100kW-A: Maximum allowable prospective short-circuit current is 10 kA when protected by fuses given in fuse tables.

Types -0250kW-A ... -1000kW-C: Maximum allowable prospective shortcircuit current is 50 kA when protected by fuses given in fuse tables.

When temporary grounding for work is applied (the grounding cables are connected to the connecting knobs of the AC and DC busbars and PE of the inverter): the maximum allowable prospective short-circuit current is decreased to 25 kA / 1 s. If the connected grounding cables and clamps are not equivalent to the prospective short-circuit rating of the inverter, the total rating will be lower.

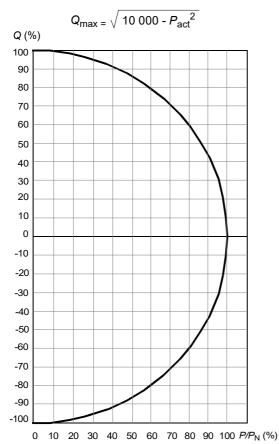
Frequency 45 ... 65 Hz withstand with normal dimensioning (grid-compliance may require disconnection at smaller values.) Maximum rate of change 17%/s

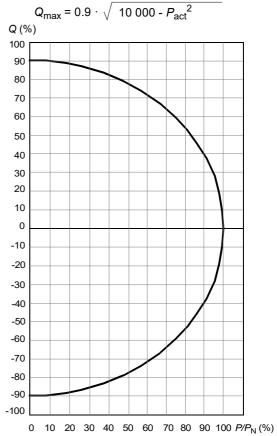
Imbalance Max. ± 3% of nominal phase to phase AC line voltage Voltage dips

Max. 25%

Note: If the inverter is expected to survive voltage dips (low-voltage ridethrough), auxiliary power supply must be ensured, for example, by an uninterruptible power supply.

Fundamental power factor (cos phi₁)


Power factor (cos phi₁) adjustment range


0...1 capacitive or inductive depending on the dimensioning

The following graphs illustrate the equipment operation with the nominal AC voltage and nominal ambient temperature. See Ratings on page 125.

Types -0100kW-A and -0250kW-A

Types -0315kW-B, -0500kW-A, 0630kW-B, -0875kW-B, -1000kW-C

Reactive power in percentage of nominal active power Q

 P/P_N Relative active power

Current See section Ratings.

Overvoltage category (IEC 62109, IEC 60664-1) 3 (With option +F263, the category is 1.)

Harmonic distortion THD current < 3% at nominal load

DC input connection data

Maximum DC power (P_{pv}) See section Ratings. **Maximum DC current** See section Ratings.

 $(I_{max(DC)})$

Maximum DC voltage Types -0100kW-A, -0250kW-A and -0315kW-B: 1000 V DC

 $(U_{\text{max}(DC)})$ Types -0500kW-A, -0630kW-B, -0875kW-B and -1000kW-C: 1100 V DC

Operational DC voltage Types -0100kW-A, -0250kW-A and -0500kW-A: 450...825 V DC range, U_{mppt(DC)} Types -0315kW-B, -0630kW-B and -0875kW-B: 525...825 V DC

Type -1000kW-C: 600...850 V DC

Voltage ripple < 3% Overvoltage category 2 (IEC 62109, IEC 60664-1)

Auxiliary power connection data

Voltage 230 V AC (115 V AC optional)

Frequency 50/60 Hz

Allowed electrical system TN-S (grounded) system. If IT (ungrounded) system, contact ABB for

instructions.

Overvoltage category

(IEC 62109, IEC 60664-1)

Control unit (RDCU/RMIO) connection data

Analog inputs

RDCU (A43, PVS800 master control program): one programmable differential current input (0 mA / 4 mA ... 20 mA, $R_{\rm in}$ = 100 ohm).

RDCU (A41, PVS800 inverter control program): two programmable differential current input (0 mA / 4 mA ... 20 mA, R_{in} = 100 ohm) and one programmable differential voltage input (-10 V ... +10 V, R_{in} = 200 kohm).

The analog inputs are galvanically isolated as a group.

Insulation test voltage

Max. common mode voltage

Max. common mode voltage ±1 between the channels

±15 V DC

500 V AC, 1 min

Common mode rejection ratio

ection ratio <u>></u> 60 dB at 50 Hz

Resolution

0.025% (12 bit) for the -10 V \dots +10 V input. 0.5% (11 bit) for the

0...+10 V and 0...20 mA inputs.

Inaccuracy

±0.5% (Full Scale Range) at 25 °C (77 °F). Temperature coefficient:

±100 ppm/°C (±56 ppm/°F), max.

Constant voltage output

Voltage +10 V DC, 0, -10 V DC ± 0.5% (Full Scale Range) at 25 °C (77 °F).

Temperature coefficient: ±100 ppm/°C (±56 ppm/°F) max.

Maximum load 10 mA

Applicable potentiometer 1 kohm ... 10 kohm

Auxiliary power output

Voltage 24 V DC ± 10%, short circuit proof

Maximum current 250 mA (shared between this output and optional modules installed on

the RMIO)

Analog outputs

Resolution

Two programmable current outputs: 0 (4) ... 20 mA, $R_L \le 700$ ohm

0.1% (10 bit)

Inaccuracy ±1% (Full Scale Range) at 25 °C (77 °F). Temperature coefficient:

±200 ppm/°C (±111 ppm/°F) max.

Digital inputs

RDCU (A43, PVS800 master control program): two programmable digital inputs (common ground: 24 V DC, -15% to +20%) and a start interlock input. Group isolated, can be divided in two isolated groups (see *Isolation and grounding diagram* below).

RDCU (A41, PVS800 inverter control program): one programmable digital input (common ground: 24 V DC, -15% to +20%) and a start interlock input. Group isolated, can be divided in two isolated groups (see *Isolation and grounding diagram* below).

Internal supply for digital inputs (+24 V DC): short-circuit proof. An external 24 V DC supply can be used instead of the internal supply.

Insulation test voltage 500 V AC, 1 min

Logical thresholds < 8 V DC \(\heta \) "0", > 12 V DC \(\heta \) "1" Input current DI1 to DI 5: 10 mA, DI6: 5 mA

Filtering time constant 1 ms

Relay outputs

RDCU (A43, PVS800 master control program): two programmable relay outputs, or with option +Q951 one programmable relay output RDCU (A41, PVS800 inverter control program): without option +Q954

one programmable relay output

Switching capacity 8 A at 24 V DC or 250 V AC, 0.4 A at 120 V DC

Minimum continuous current 5 mA rms at 24 V DC

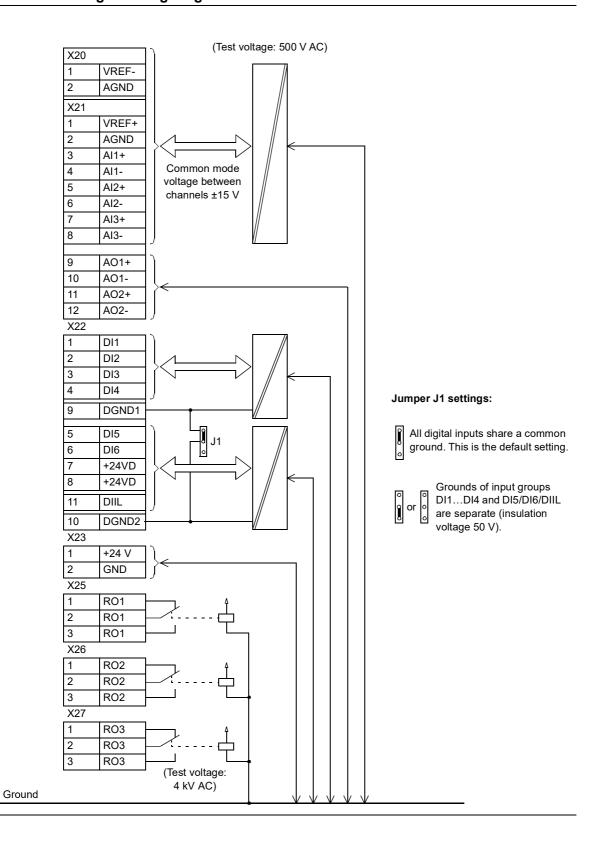
Maximum continuous current 2 A rms

Insulation test voltage 4 kV AC, 1 minute

DDCS fiber optic link

With optional communication adapter module RDCO. Protocol: DDCS (ABB Distributed drives communication system)

24 V DC power input

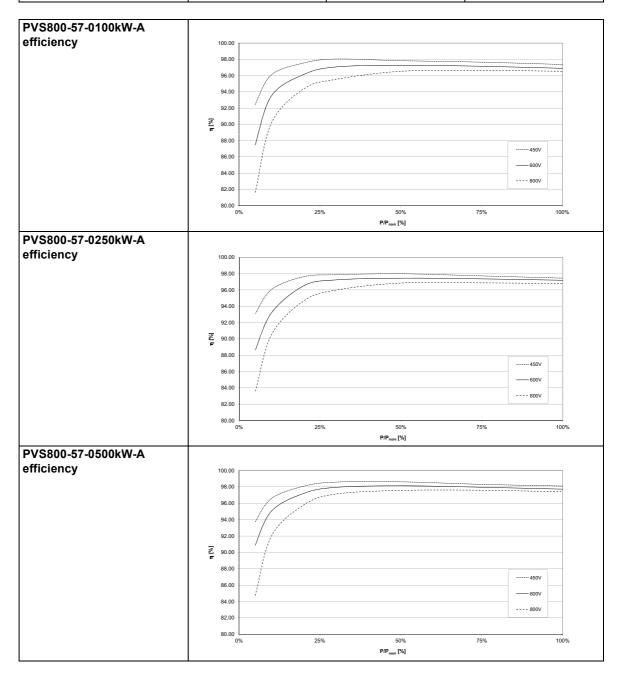

24 V DC ± 10% Voltage 250 mA

Typical current consumption (without optional modules)

Maximum current consumption 1200 mA (with optional modules inserted)

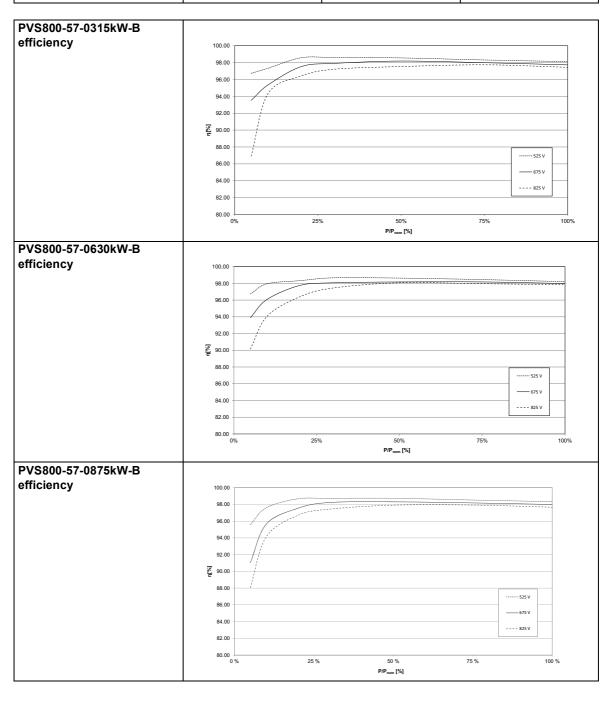
The terminals on the RMIO board as well as on the optional modules attachable to the board fulfil the Protective Extra Low Voltage (PELV) requirements stated in EN 50178 provided that the external circuits connected to the terminals also fulfil the requirements and the installation site is below 2000 m (6560 ft). Above 2000 m (6560 ft), see page 78.

Isolation and grounding diagram

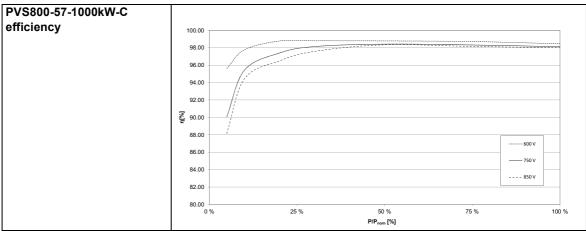


Efficiency

All values below are without auxiliary power consumption. The inverter complies with efficiency standards IEC 61683 and EN 50530.


Maximum efficiency	DC voltage					
	450 V	600 V	800 V			
PVS800-57-0100kW-A	98.0	97.3	96.6			
PVS800-57-0250kW-A	98.0	97.4	96.9			
PVS800-57-0500kW-A	98.6	98.1	97.6			

European (EURO-eta)	DC voltage				
efficiency	450 V	600 V	800 V		
PVS800-57-0100kW-A	97.5	96.5	95.3		
PVS800-57-0250kW-A	97.6	96.7	95.7		
PVS800-57-0500kW-A	98.2	97.5	96.5		


Maximum efficiency	DC voltage					
	525 V	675 V	825 V			
PVS800-57-0315kW-B	98.6	98.2	97.7			
PVS800-57-0630kW-B	98.6	98.2	98.1			
PVS800-57-0875kW-B	98.7	98.3	97.9			

European (EURO-eta)	DC voltage				
efficiency	525 V	675 V	825 V		
PVS800-57-0315kW-B	98.3	97.7	96.8		
PVS800-57-0630kW-B	98.4	97.8	97.3		
PVS800-57-0875kW-B	98.5	97.8	97.1		

Maximum efficiency	DC voltage		
	600 V	750 V	850 V
PVS800-57-1000kW-C	98.8	98.4	98.3

European (EURO-eta)	DC voltage		
efficiency	600 V	750 V	850 V
PVS800-57-1000kW-C	98.6	97.8	97.4

Degrees of protection

IP42 (UL type 2)

Protective class Class I (IEC 62109-1)

Ambient conditions

Environmental limits for the inverter are given below. The inverter is to be used in a heated, **indoor, controlled** environment.

Note: If the installation has ventilation ducts directly to outdoors (eg, a container installation), back flow of moist and dusty air must be prevented. See section *Ventilation duct at the air outlet of the cabinet* on page 69.

	See section Ventilation do	Storage	Transportation
	installed for stationary	in the protective	in the protective
	use	package	package
Installation site altitude	Types -0100kW-A, - 0250kW-A, 0315kW-B: 0 2000 m (0 6560 ft) above sea level	-	-
	Types -0500kW-A, -0630kW-B, 0875kW-B and -1000kW-C: 0 4000 m (0 13120 ft) above sea level		
	Above 1000 m (3280 ft), output derating is necessary. See section <i>Altitude derating</i> on page 126.		
Air temperature	Types -0100kW-A and -0250kW-A: -15 +55 °C (5 131 °F)	-40 +70 °C (-40 +158 °F)	-40 +70 °C (-40 +158 °F)
	Types -0315kW-B, -0500kW-A, -0630kW-B, -0875kW-B and -1000kW-C: -15 +60 °C (5 140 °F)		
	If the operating temperature falls below 0 °C (32 °F), cabinet heater option +G300 must be used.		
	No frost allowed. See section <i>Temperature</i> rating curves.		
Relative humidity	5 to 95%	Max. 95%	Max. 95%
	No condensation allowed. Maximum allowed relative humidity is 60% in the presence of corrosive gases. If the inverter is installed on a site where the relative humidity limits may be exceeded, cabinet heater option +G300 has to be used.		
Environmental category	Indoor conditioned		
(IEC 62109-1)			
Wet conditions	Not to be used in wet location. The installation location must be dry.		
(IEC 62109-1)			
Pollution degree	Normally only non-conductive pollution is allowed.		
(IEC 62109-1)			

Contamination levels	No conductive dust allowed.		
(IEC 60721-3-3, IEC 60721-3-2, IEC 60721-3-1)	Chemical gases: Class 3C1	Chemical gases: Class 1C2	Chemical gases: Class 2C2
	Solid particles: Class 3S2	Solid particles: Class 1S3	Solid particles: Class 2S2
Atmospheric pressure	61.6 106 kPa 0.7 1.05 atmospheres	70 106 kPa 0.7 1.05 atmospheres	60 106 kPa 0.6 1.05 atmospheres
Vibration (IEC 60068-2)	Max. 1 mm (0.04 in.) (5 to 13.2 Hz), max. 7 m/s ² (23 ft/s ²) (13.2 to 100 Hz) sinusoidal	Max. 1 mm (0.04 in.) (5 to 13.2 Hz), max. 7 m/s ² (23 ft/s ²) (13.2 to 100 Hz) sinusoidal	Max. 3.5 mm (0.14 in.) (2 to 9 Hz), max. 15 m/s ² (49 ft/s ²) (9 to 200 Hz) sinusoidal
Shock (IEC 60068-2-27)	Not allowed	Max. 100 m/s ² (330 ft/s ²), 11 ms	Max. 100 m/s ² (330 ft/s ²), 11 ms
Free fall	Not allowed	100 mm (4 in.) for weight over 100 kg (220 lb)	100 mm (4 in.) for weight over 100 kg (220 lb)

Materials

Cabinet Hot-dip zinc-coated (thickness approximately 20 micrometers) steel sheet

(thickness 1.5 mm) with polyester thermosetting powder coating (thickness approximately 80 micrometers) on visible surfaces except back panel. Color:

RAL 7035 (light beige, semigloss).

Air filters on the cabinet door

For 400 mm wide cubicles: AIR-TEX G-150, 318 mm × 540 mm (ABB code: 64666533)

For 600 mm wide cubicles: AIR-TEX G-150, 518 mm × 540 mm (ABB code:

646665324)

Busbars Tin-plated copper or aluminum

Fire safety of materials

(IEC 60332-1)

Package

Disposal

Insulating materials and non-metallic items: mostly self-extinctive

Frame: Wood or plywood. Plastic wrapping: PE-LD. Bands: PP or steel. The main parts of the inverter can be recycled to preserve natural resources and energy. Product parts and materials should be dismantled and separated.

Generally all metals, such as steel, aluminum, copper and its alloys, and precious metals can be recycled as material. Plastics, rubber, cardboard and other packaging material can be used in energy recovery. Printed circuit boards and large electrolytic capacitors need selective treatment according to IEC 62635 guidelines. To aid recycling, plastic parts are marked with an appropriate identification code.

Contact your local ABB distributor for further information on environmental aspects and recycling instructions for professional recyclers. End of life treatment must follow international and local regulations.

Auxiliary circuit power consumption

The auxiliary circuit must be supplied by the customer galvanically separated from inverter output.

Inverter type	Total in running max. (W)	Total in stand-by (W)	Additional consumption in stand- by (option +G300) (max. W)
PVS800-57-0100kW-A	310	60	150
PVS800-57-0250kW-A	310	60	250
PVS800-57-0315kW-B	310	60	250
PVS800-57-0500kW-A	490	65	350
PVS800-57-0630kW-B	490	65	350
PVS800-57-0875kW-B	650	65	450
PVS800-57-1000kW-C	650	65	450

Notes:

- The values above do not include the cooling fans of the inverter modules.
 Their power is taken from the solar generator.
- Every additional incoming cubicle increases the auxiliary power consumption by 50 W in PVS800-57-0100kW-A...PVS800-57-0630kW-B and by 25 W in PVS800-57-0875kW-B...PVS800-57-1000kW-C.
- The actual consumption depends on the options installed.
- Option +G300: The actual power consumption depends on temperature.
- Option +G410: Maximum power consumption 20 W per junction box.
- The auxiliary circuit has to be protected with 16 A gG fuses. See the circuit diagrams delivered with the inverter.

Applicable standards and requirements

The inverter complies with the standards below.

IEC/EN 62109-1:2010 Safety of power converters for use in photovoltaic power systems Part 1:

General requirements

IEC/EN 62109-2:2011 Safety of power converters for use in photovoltaic power systems Part 2:

Particular requirements for inverters

The inverter complies with the standard when the inverter and the

photovoltaic array are installed and used inside a closed electrical operating area. Then, the inverter does not need to comply with subclauses 4.8.2.1, 4.8.2.2, 4.8.3.2, 4.8.3.4, and 4.8.3.5.1b. However, the inverter complies with

subclauses 4.8.2.1 and 4.8.2.2.

EN 50530:2010 Overall efficiency of photovoltaic inverters

IEC 60529:1989 / EN 60529:1991

Degrees of protection provided by enclosures (IP code)

IEC/EN 61000-6-2:2005 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards -

Immunity for industrial environments

IEC/EN 61000-6-4:2007 Electromagnetic compatibility (EMC) - Part 6-4: Generic standards -

Emission standard for industrial environments

IEC 61683:1999 Photovoltaic systems - Power conditioners - Procedure for measuring

efficiency

IEC 61000-3-12:2011 Electromagnetic compatibility (EMC) – Part 3-12: Limits – Limits for harmonic

currents produced by equipment connected to public low-voltage systems

with input current >16 A and <75 A per phase

Note: The inverter complies with the standard when its output power is 20% of the nominal power or greater. When the output power is less than 20% of

the nominal power, the short-circuit ratio R_{sce} = 250.

For the rest of the applicable standards and grid codes, go to www.abb.com/solar on the Internet.

CE marking

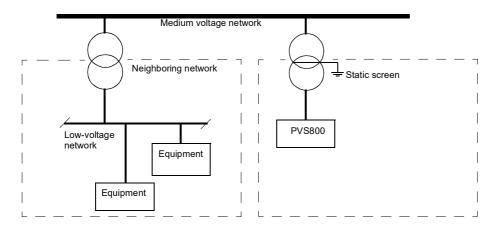
A CE mark is attached to the inverter to verify that the unit follows the provisions of the European Low Voltage and EMC Directives.

Compliance with the European Low Voltage Directive

The compliance with the European Low Voltage Directive has been verified according to standard EN 62109.

Compliance with the European EMC directive

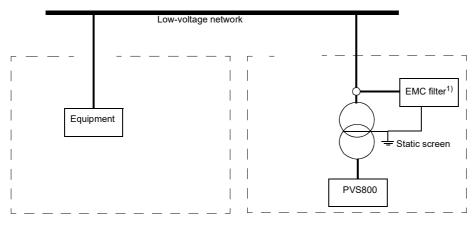
The EMC Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. EMC standards EN 61000-6-2:2005 and EN 61000-6-4:2007 cover requirements stated for electrical and electronic apparatus intended for use in industrial environments.


Compliance with EMC standards EN 61000-6-2:2005 and EN 61000-6-4:2007

EMC stands for Electromagnetic Compatibility. It is the ability of electrical/electronic equipment to operate without problems within an electromagnetic environment. Likewise, the equipment must not disturb or interfere with any other product or system within its locality.

Medium voltage network

The requirements of the EMC Directive can be met as follows:


- A transformer with static screening between the primary and secondary windings is used to ensure that no excessive emission is propagated to neighboring low-voltage networks.
- The inverter is installed to an IT (ungrounded) system according to the instructions given in the hardware manual.

Low-voltage network

The requirements of the EMC Directive can be met as follows:

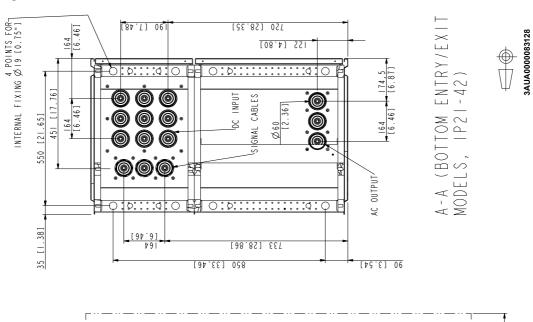
- 1. A transformer with static screening between the primary and secondary windings is used to ensure that no excessive emission is propagated to neighboring low-voltage networks.
- 2. The low-voltage network is of the TN type (grounded).
- 3. The EMC filter (option +E216) is installed on network side of the low-voltage transformer.
- 4. The inverter is installed according to the instructions given in the hardware manual.

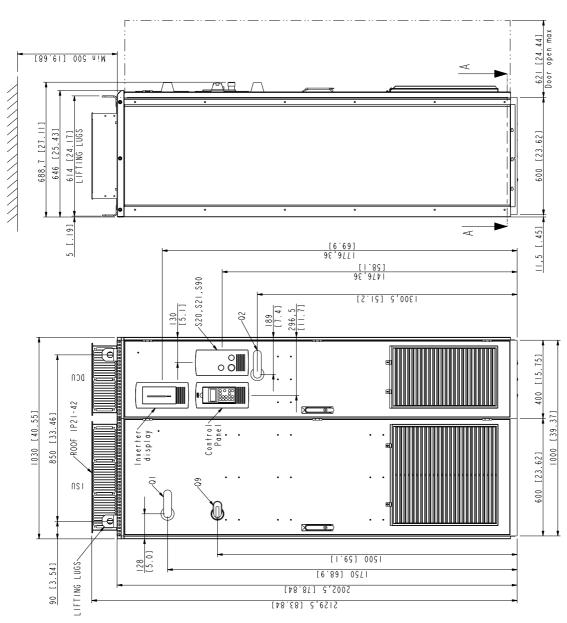
1) option +E216

C "C-tick" marking

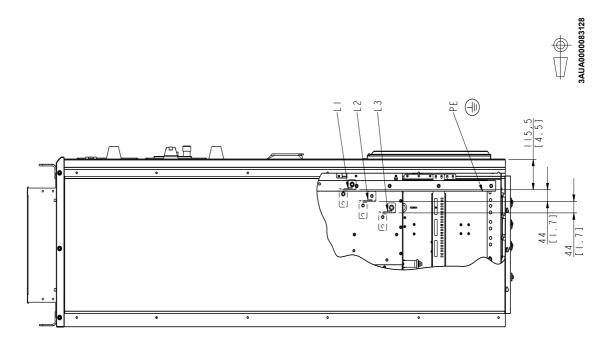
"C-tick" marking is required in Australia and New Zealand. A "C-tick" mark is attached to the inverter to verify compliance with the relevant standards IEC/EN 61000-6-2:2005 and IEC/EN 61000-6-4:2007, mandated by the Trans-Tasman Electromagnetic Compatibility Scheme.

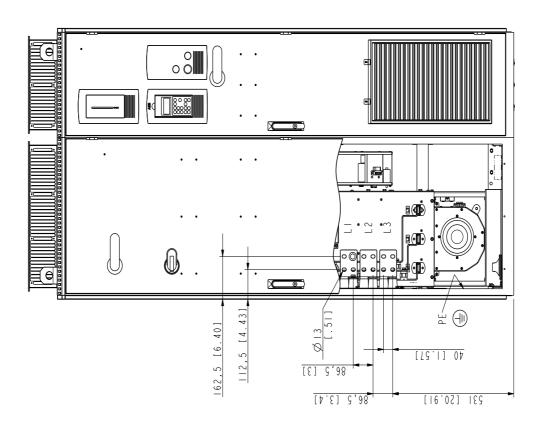
For fulfilling the requirements of the standard, see section *Compliance with the European EMC directive* on page 149.

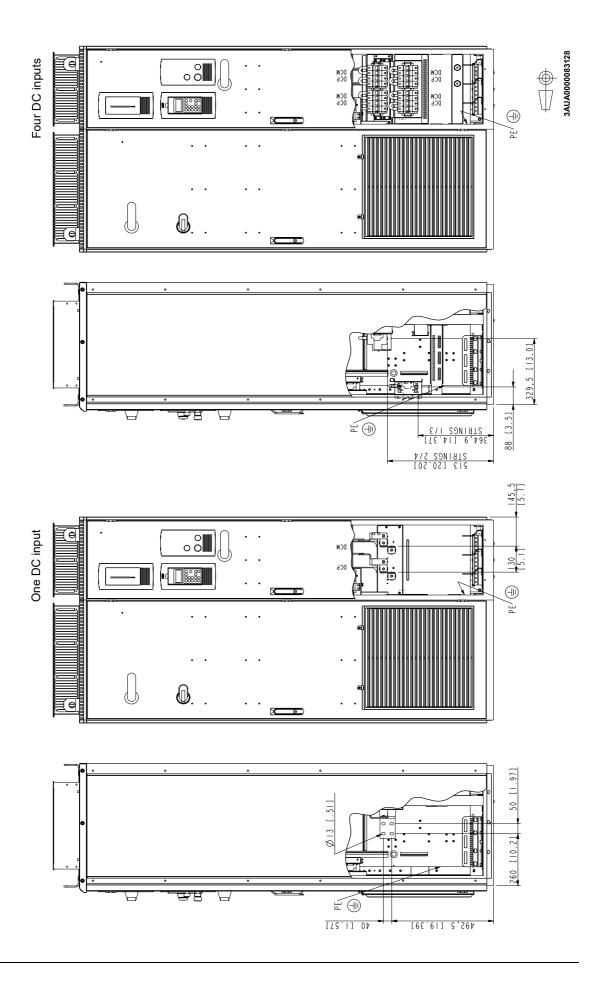

12


Dimension drawings

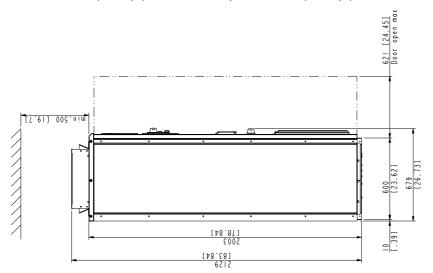
Contents of this chapter

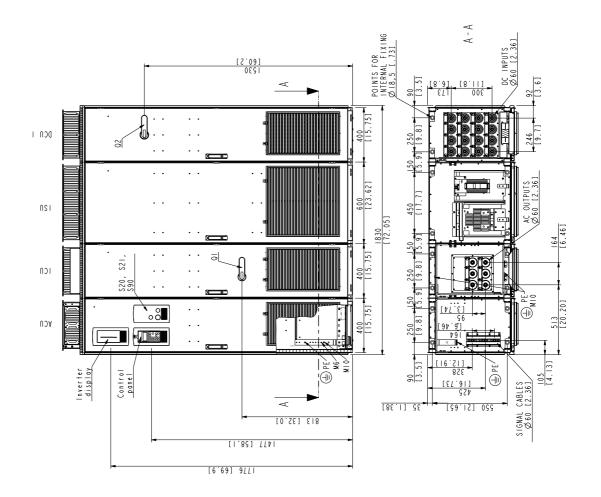

This chapter contains example dimension drawings of the inverter.


Frame R7i

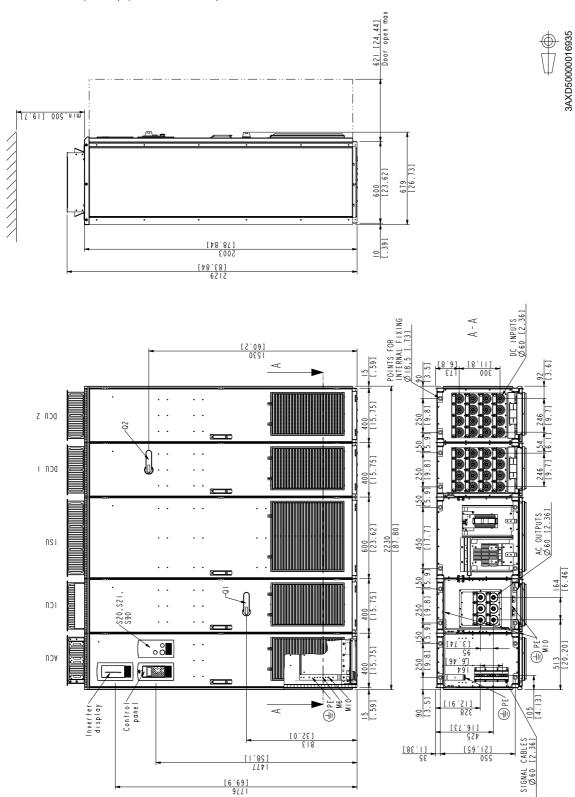


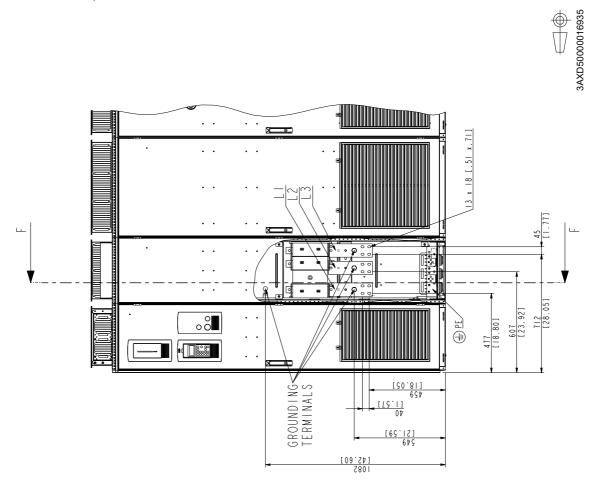
AC output:

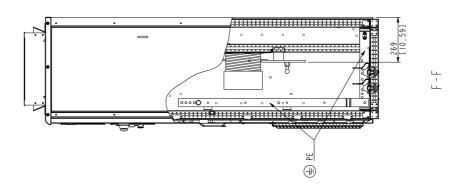




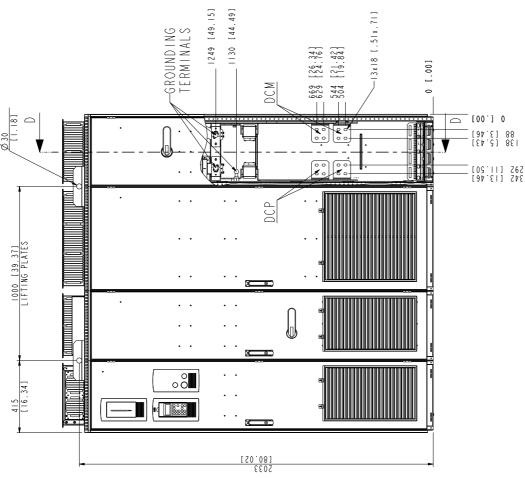
Frame R8i

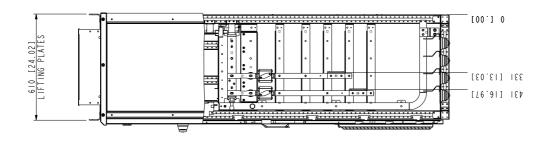

R8i – 2 DC inputs (option +2H382) or 4 DC inputs (option +4H382):



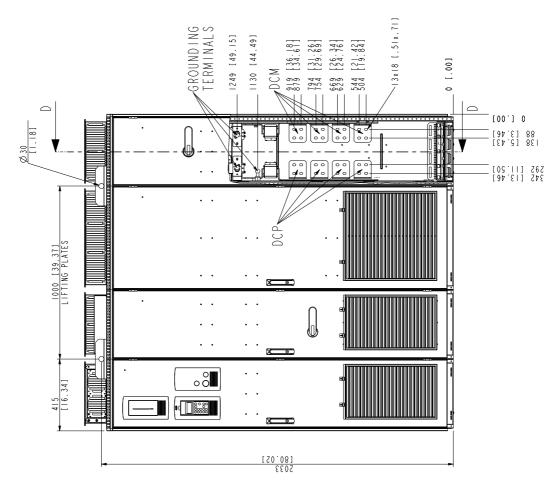


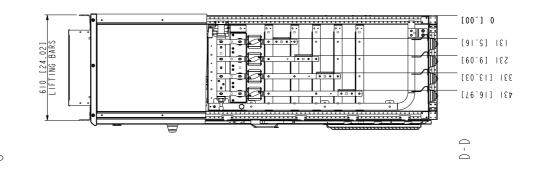
R8i - 8 DC inputs (option +8H382):


R8i – AC output terminals:



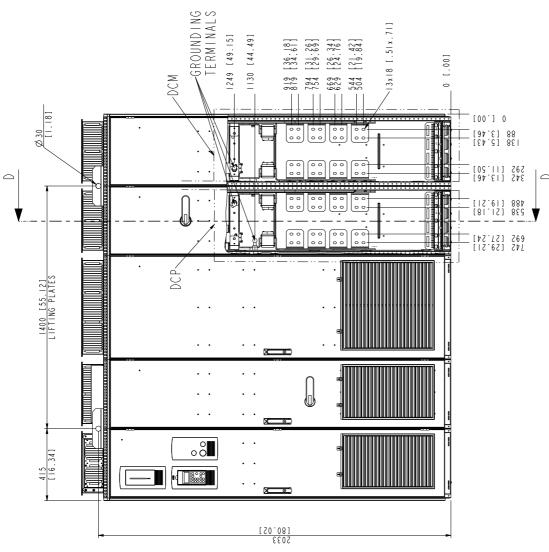
R8i – DC terminals of units with 2 DC inputs (option +2H382):

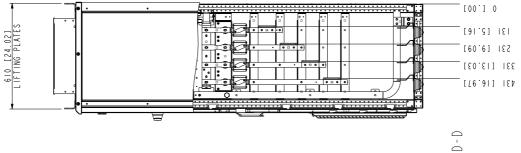




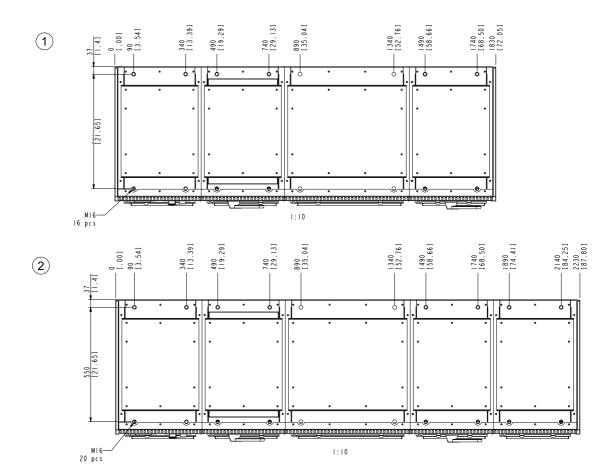
0-0

R8i – DC terminals of units with 4 DC inputs (option +4H382):

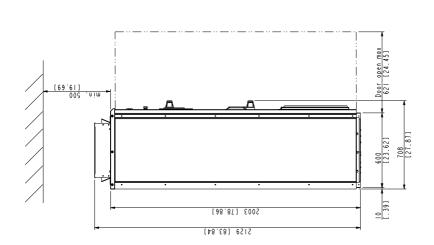


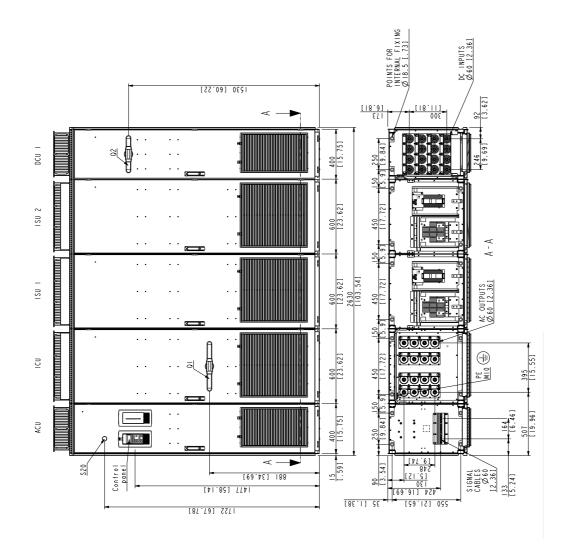


5

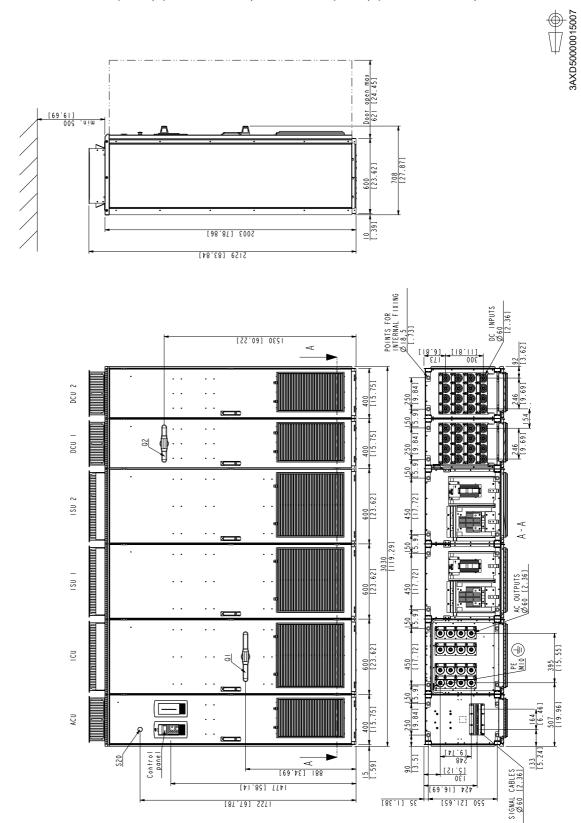

R8i – DC terminals of units with 8 DC inputs (option +8H382):

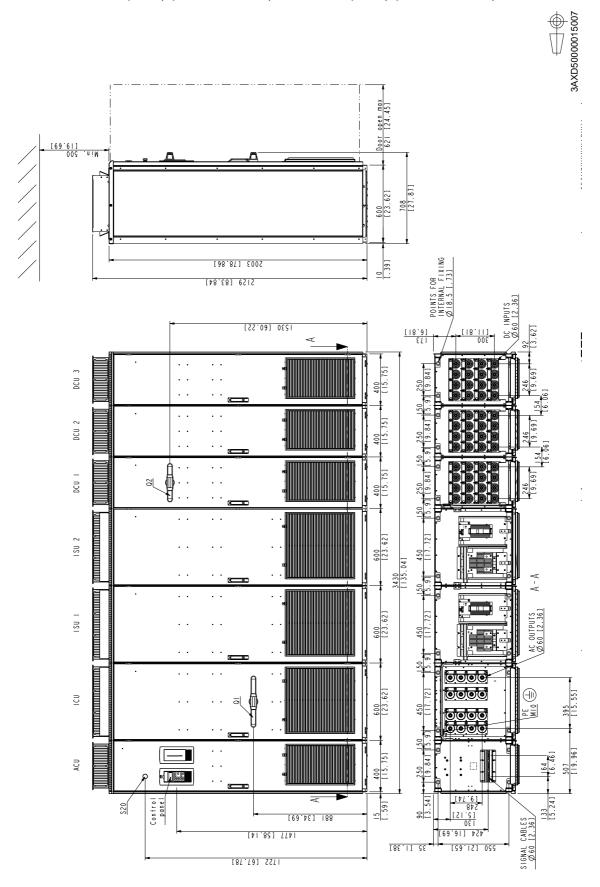
R8i – Top view of fastening points:



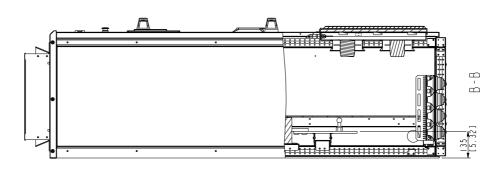

- 1) Two DC inputs (option +2H382), four DC inputs (option +4H382)
- 2) Eight DC inputs (option +8H382)

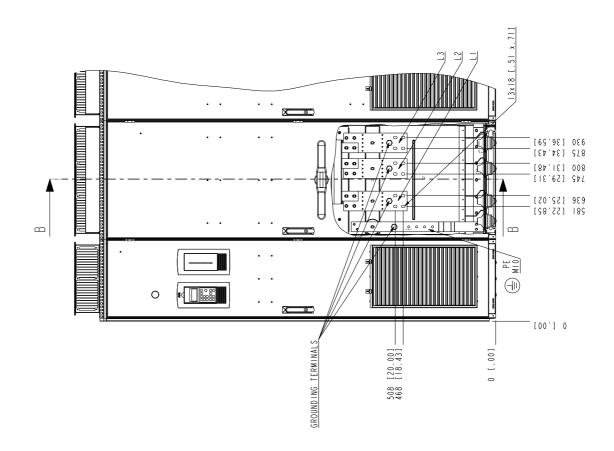
Frame 2 × R8i

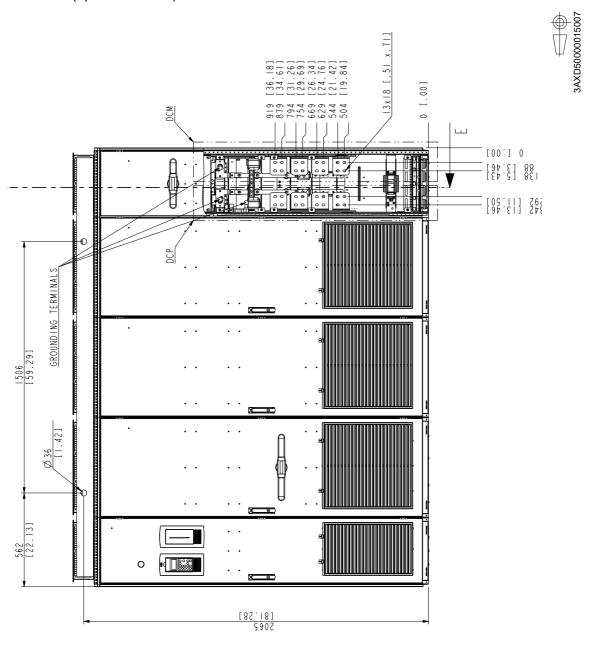

 $2 \times R8i - 4$ DC inputs (option +4H382) or 5 DC inputs (option +5H382):

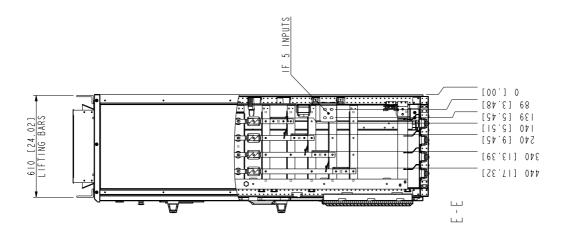


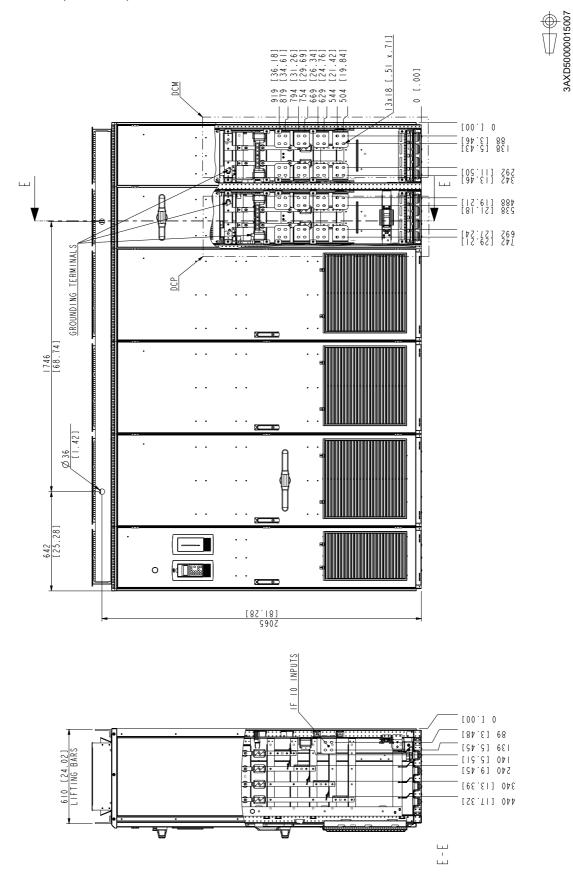
$2 \times R8i - 8$ DC inputs (option +8H382) or 10 DC inputs (option +10H382):



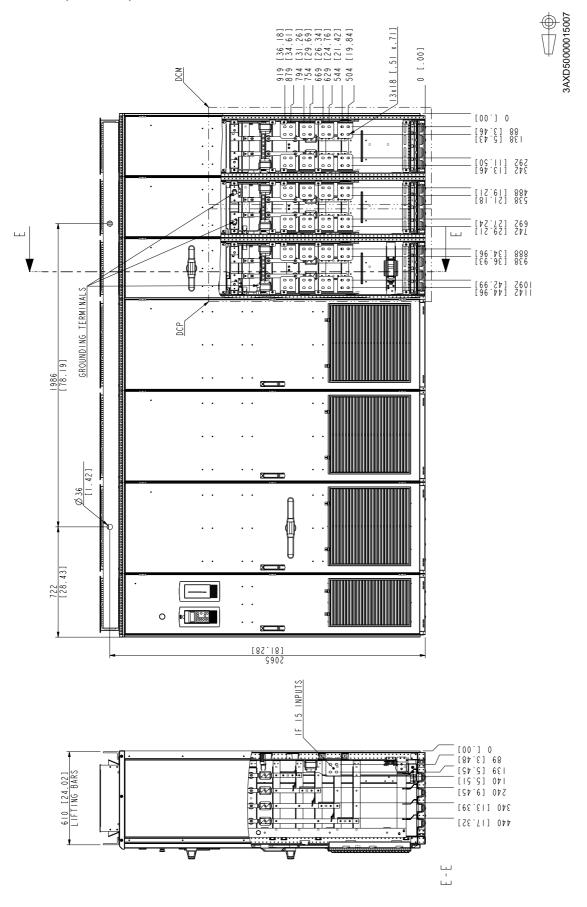

2 × R8i – 12 DC inputs (option +12H382) or 15 DC inputs (option +15H382):


2 × R8i – AC output terminals:

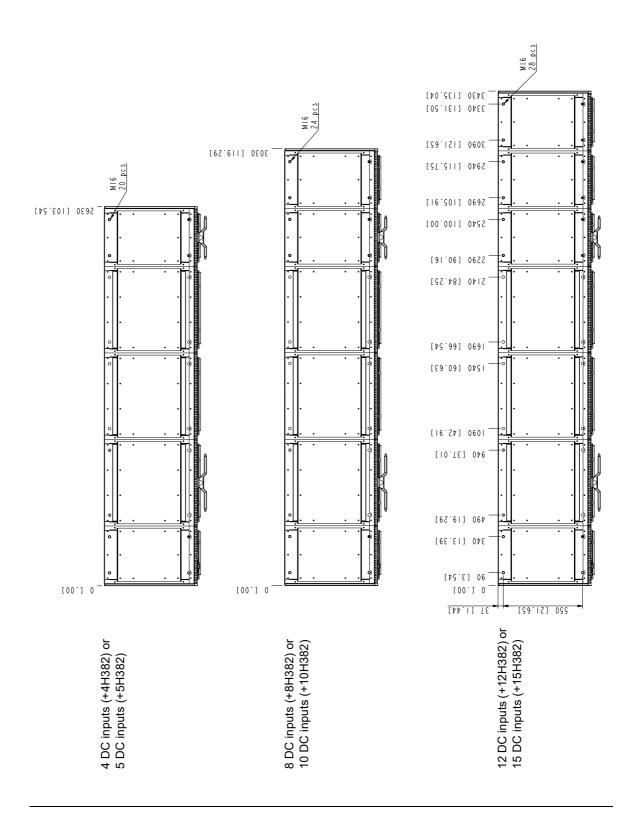




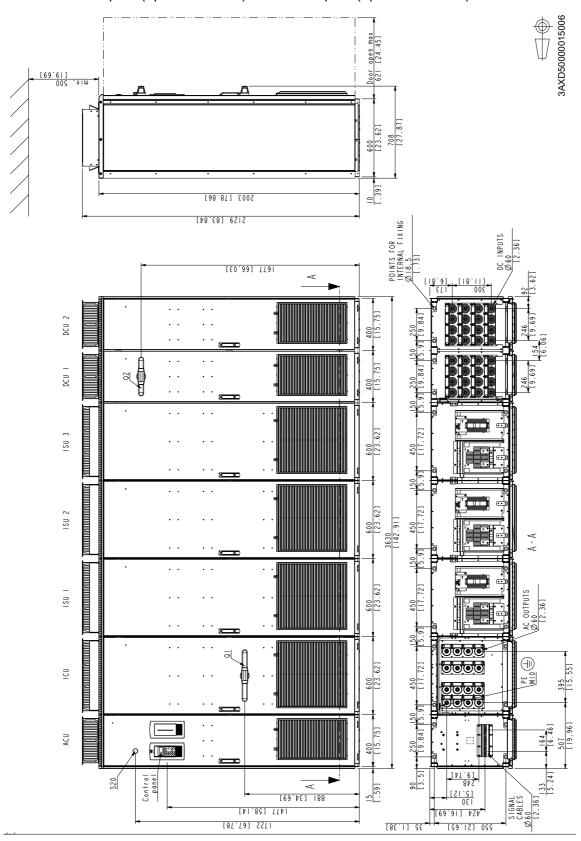
 $2 \times R8i - DC$ terminals of units with 4 DC input terminals (option +4H382) or 5 DC input terminals (option +5H382):

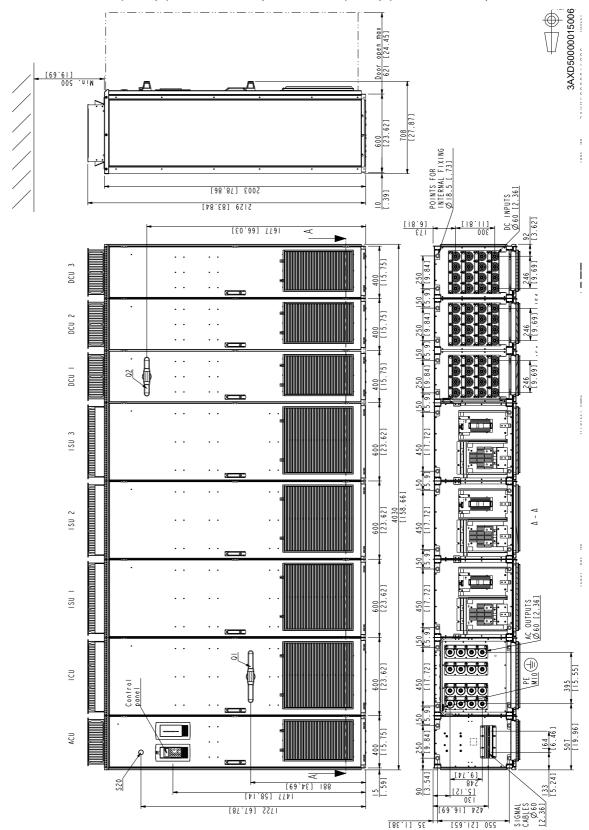


2 × R8i – DC terminals of units with 8 DC input terminals (+8H382) or 10 DC input terminals (+10H382):

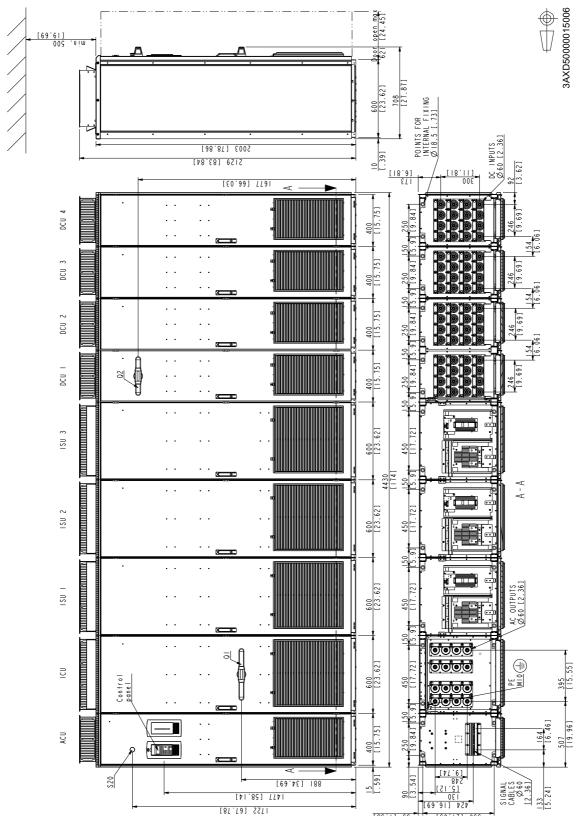


 $2 \times R8i - DC$ terminals of units with 12 DC input terminals (+12H382) or 15 DC input terminals (+15H382):

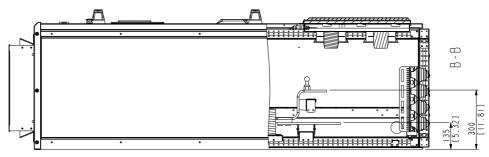

2 × R8i – Top view of fastening points:

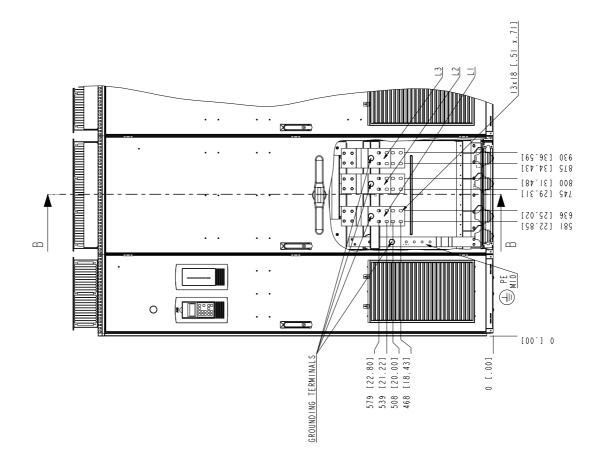


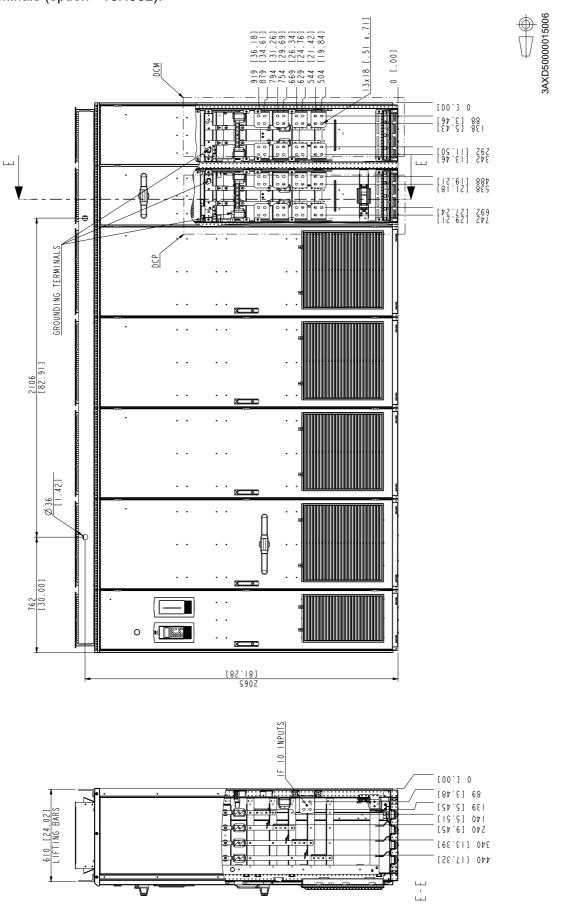
Frame 3 × R8i

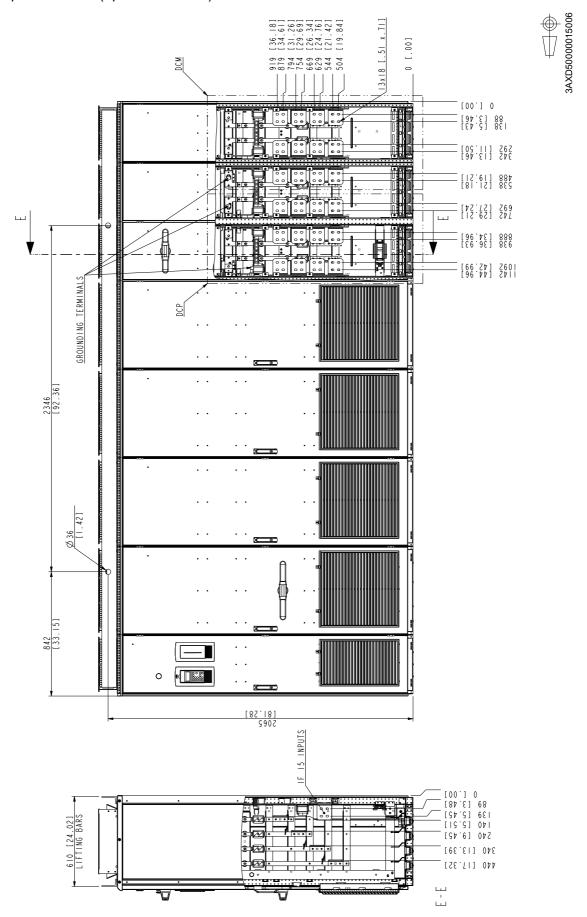

 $3 \times R8i - 8 DC$ inputs (option +8H382) or 10 DC inputs (option +10H382):

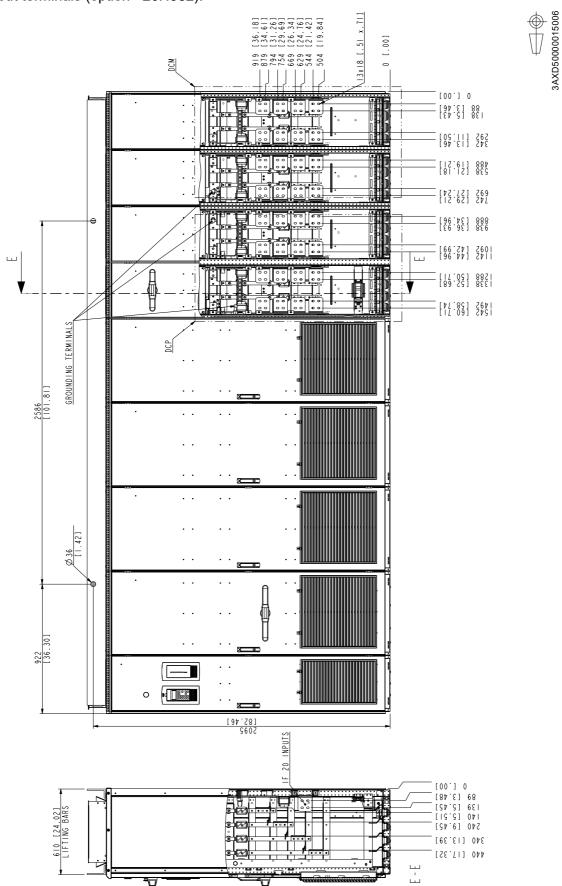
3 × R8i – 12 DC inputs (option +12H382) or 15 DC inputs (option +15H382):

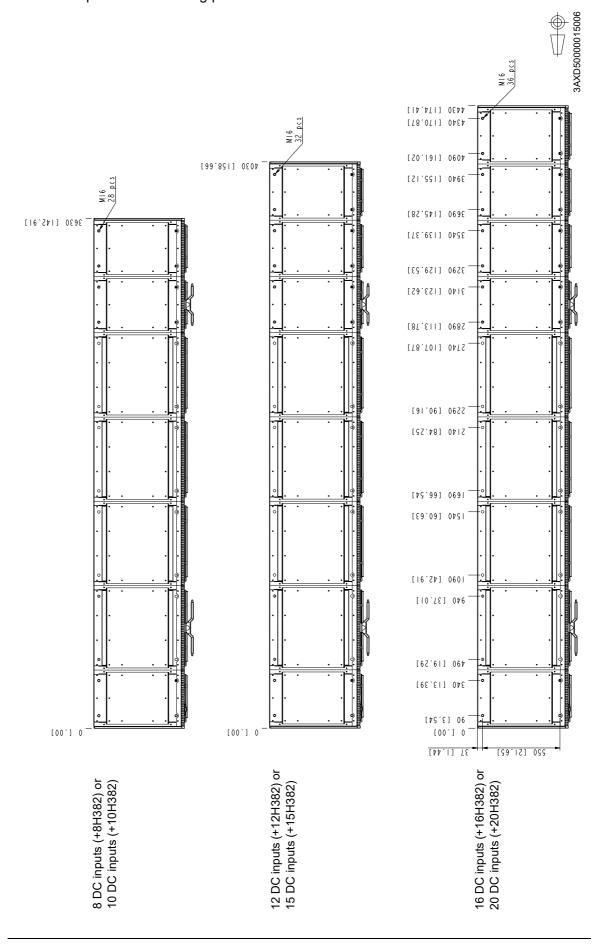





3 × R8i – AC input terminals:




 $3 \times R8i - DC$ terminals of units with 8 DC input terminals (option +8H382) or 10 DC input terminals (option +10H382):


3 × R8i – DC terminals of units with 12 DC input terminals (option +12H382) or 15 DC input terminals (option +15H382):

 $3 \times R8i - DC$ terminals of units with 16 DC input terminals (option +16H382) or 20 DC input terminals (option +20H382):

3 × R8i – Top view of fastening points:

Further information

More information about ABB products for solar applications on the Internet: www.abb.com/solar.

Contact us

www.abb.com/solar

3AUA0000053689 Rev J (EN) EFFECTIVE: 2020-02-14